Technical English: AC motors and generators.

AC Motors

 

     Two basic types of motors are designed to operate on polyphase alternating current, synchronous motors and induction motors. The synchronous motor is essentially a three-phase alternator operated in reverse. The field magnets are mounted on the rotor and are excited by direct current, and the armature winding is divided into three parts and fed with three-phase alternating current. The constant speed of a synchronous motor is advantageous in certain devices; however, in applications where the mechanical load on the motor becomes very great, synchronous motors cannot be used, because if the motor slows down under load it will “fall out of step” with the frequency of the current and come to a stop. Synchronous motors can be made to operate from a single-phase power source by the inclusion of suitable circuit elements that cause a rotating magnetic field.

     The simplest of all electric motors is the squirrel-cage type of induction motor used with a three-phase supply. The rotating member consists of a core in which are imbedded a series of heavy conductors arranged in a circle around the shaft and parallel to it. With the core removed, the rotor conductors resemble in form the cylindrical cages once used to exercise pet squirrels. The three-phase current flowing in the stationary armature windings generates a rotating magnetic field, and this field induces a current in the conductors of the cage. The magnetic reaction between the rotating field and the current-carrying conductors of the rotor makes the rotor turn. If the rotor is revolving at exactly the same speed as the magnetic field, no currents will be induced in it, and hence the rotor should not turn at a synchronous speed. In operation the speeds of rotation of the rotor and the field differ by about 2 to 5 percent. This speed difference is known as slip. Motors with squirrel-cage rotors can be used on single-phase alternating current by means of various arrangements of inductance and capacitance that alter the characteristics of the single-phase voltage and make it resemble a two-phase voltage. Such motors are called split-phase motors or condenser motors (or capacitor motors), depending on the arrangement used. Single-phase squirrel-cage motors do not have a large starting torque, and for applications where such torque is required, repulsion-induction motors are used. A repulsion-induction motor may be of the split-phase or condenser type, but has a manual or automatic switch that allows current to flow between brushes on the commutator when the motor is starting, and short-circuits all commutator segments after the motor reaches a critical speed. Repulsion-induction motors are so named because their starting torque depends on the repulsion between the rotor and the stator, and their torque while running depends on induction. Series-wound motors with commutators, which will operate on direct or alternating current, are called universal motors. They are usually made only in small sizes and are commonly used in household appliances.

Alternating-Current (AC) Generators (Alternators)

    

     As you know, the simple generator without a commutator will produce an electric current that alternates in direction as the armature revolves. Such alternating current is advantageous for electric power transmission.  Most large electric generators are of the AC type.  An AC generator differs from a DC generator in only two particulars: the ends of its armature winding are brought out to solid unsegmented slip rings on the generator shaft instead of to commutators, and the field coils are energized by an external DC source rather than by the generator itself. Low-speed AC generators are built with as many as 100 poles, both to improve their efficiency and to attain more easily the frequency desired. Alternators driven by high-speed turbines, however, are often two-pole machines. The frequency of the current delivered by an AC generator is equal to half the product of the number of poles and the number of revolutions per second of the armature.

     It is often desirable to generate as high a voltage as possible, and rotating armatures are not practical in such applications because of the possibility of sparking between brushes and slip rings and the danger of mechanical failures that might cause short circuits. Alternators are therefore constructed with a stationary armature within which revolves a rotor composed of a number of field magnets. The principle of operation is exactly the same as that of the AC generator described, except that the magnetic field (rather than the conductors of the armature) is in motion.

     The current generated by the alternators described above rises to a peak, sinks to zero, drops to a negative peak, and rises again to zero a number of times each second, depending on the frequency for which the machine is designed. Such current is known as single-phase alternating current. If, however, the armature is composed of two windings, mounted at right angles to each other, and provided with separate external connections, two current waves will be produced, each of which will be at its maximum when the other is at zero. Such current is called two-phase alternating current. If three armature windings are set at 120° to each other, current will be produced in the form of a triple wave, known as three-phase alternating current. A larger number of phases may be obtained by increasing the number of windings in the armature, but in modern electrical-engineering practice three-phase alternating current is most commonly used, and the three-phase alternator is the dynamoelectric machine typically employed for the generation of electric power. Voltages as high as 13 200 are common in alternators.

 

Last modified: Sunday, 11 January 2015, 12:08 AM