ΓΟCT 18826-73

Группа Н09

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ВОДА ПИТЬЕВАЯ

Методы определения содержания нитратов

Drinking water. Methods for determination of nitrates content

MKC 13.060.20

Дата введения 1974-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 25.05.73 N 1313
 - 2. ВЗАМЕН ГОСТ 4192-48 в части нитратов
 - 3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
<u>ΓΟCT 1770-74</u>	2.2, 3.2
ΓΟCT 2874-82	1.1
<u>ΓΟCT 3760-79</u>	2.2
<u>ΓΟCT 4204-77</u>	2.2, 3.2
<u>ΓΟCT 4217-77</u>	2.2, 3.2
<u>ΓΟCT 4238-77</u>	2.2
<u>ΓΟCT 4328-77</u>	3.2
<u>ΓΟCT 4329-77</u>	2.2
<u>ΓΟCT 4525-77</u>	3.2
<u>ΓΟCT 5845-79</u>	3.2
<u>ΓΟCT 6709-72</u>	2.2, 3.2
<u>ΓΟCT 9147-80</u>	2.2, 3.2
<u>ΓΟCT 24481-80</u>	1.1

<u>ΓΟCT 25336-82</u>	2.2
<u>ГОСТ 29227-91</u>	2.2, 3.2

- 4. Ограничение срока действия снято Постановлением Госстандарта СССР от 25.12.91 N 2121
 - 5. ПЕРЕИЗДАНИЕ. Октябрь 2003 г.

Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения содержания нитратов.

1. МЕТОДЫ ОТБОРА ПРОБ

1.1. Пробы воды отбирают по ГОСТ 2874*, <u>ГОСТ 24481</u>**.

- 1.2. Объем пробы воды для определения содержания нитратов должен быть не менее 200 см³.
- 1.3. Пробу отбирают в день проведения определения или ее консервируют, добавляя на 1 дм³ исследуемой воды 2-4 см³ хлороформа или 1 см³ концентрированной серной кислоты.

2. КОЛОРИМЕТРИЧЕСКИЙ МЕТОД С ФЕНОЛДИСУЛЬФОКИСЛОТОЙ

2.1. Сущность метода

Метод основан на реакции между нитратами и фенолдисульфоновой кислотой с образованием нитропроизводных фенола, которые со щелочами образуют соединения, окрашенные в желтый цвет.

Чувствительность метода 0,1 мг/дм³ нитратного азота.

^{*} На территории Российской Федерации действует ГОСТ Р 51232-98

^{**} На территории Российской Федерации действует ГОСТ Р 51593-2000.

2.2. Аппаратура, материалы и реактивы

Фотоэлектроколориметр, баня водяная, электроплитка.

Посуда мерная стеклянная лабораторная по <u>ГОСТ 1770</u>, <u>ГОСТ 29227</u> вместимостью: колбы мерные 50, 100, 500 и 1000 см 3 , пипетки 1-2 см 3 с делениями 0,01 см 3 и 5-10 см 3 с делениями 0,1 см 3 , цилиндр измерительный 10 см 3 .

Стаканы стеклянные по ГОСТ 25336.

Цилиндры колориметрические стеклянные вместимостью 50 или 100 см³ по <u>ГОСТ 25336</u>.

Чашки фарфоровые выпарительные вместимостью 150-200 см³ по <u>ГОСТ</u> 9147.

Аммиак водный по <u>ГОСТ 3760</u>.

Калий азотнокислый по ГОСТ 4217.

Квасцы алюмоаммонийные (алюминий-аммоний сернокислый) по <u>ГОСТ</u> 4238.

Квасцы алюмокалиевые (алюминий-калий сернокислый) по ГОСТ 4329.

Кислота серная по ГОСТ 4204.

Фенол кристаллический.

Хлороформ (трихлорметан).

Серебро сернокислое.

Вода дистиллированная по ГОСТ 6709.

Палочки стеклянные.

Все реактивы должны быть квалификации "чистый для анализа" (ч.д.а.) и не должны содержать примесей нитратов.

2.3. Подготовка к анализу

- 2.3.1. Приготовление основного стандартного раствора азотнокислого калия 0,7218 г азотнокислого калия, высушенного при (105±2) °C, растворяют в мерной колбе в дистиллированной воде, доводят объем до 1 дм³ и добавляют 1 см³ хлороформа. 1 см³ этого раствора содержит 0,1 мг нитратного азота.
 - 2.3.2. Приготовление рабочего стандартного раствора азотнокислого калия

50 см³ основного раствора выпаривают досуха на водяной бане, затем к охлажденному сухому остатку добавляют 2 см³ фенолдисульфоновой кислоты и тщательно растирают стеклянной палочкой до полного смешения с сухим остатком. Затем добавляют несколько кубических сантиметров дистиллированной воды, количественно переносят в мерную колбу вместимостью 500 см³ и доводят объем до метки дистиллированной водой. 1 см³ этого раствора содержит 0,01 мг нитратного азота.

2.3.3. Приготовление суспензии гидроокиси алюминия

125 г алюмоаммонийных квасцов $NH_4Al(SO_4)_2 \cdot 12H_2O$ или алюмокалиевых квасцов $KAl(SO_4)_2 \cdot 12H_2O$ растворяют в 1 дм³ дистиллированной воды. Затем раствор подогревают до 60 °C и постепенно, при постоянном помешивании, добавляют 55 см³ концентрированного раствора аммиака. После отстаивания в течение 1 ч осадок переносят в большой стакан и промывают декантацией дистиллированной водой до отсутствия в промывной воде аммиака, хлоридов и нитратов.

2.3.4. Приготовление фенолдисульфокислоты

25 г кристаллического бесцветного фенола (если препарат окрашен, необходима его очистка перегонкой) растворяют в 150 см³ концентрированной серной кислоты и нагревают в течение 6 ч на водяной бане в колбе с обратным холодильником. Раствор хранят в склянке из темного стекла с притертой пробкой.

2.3.5. Приготовление раствора сернокислого серебра

4,40 г сернокислого серебра ${\rm Ag}_2{\rm SO}_4$ растворяют в дистиллированной воде и доводят в мерной колбе дистиллированной водой до 1 дм 3 . 1 см 3 раствора приблизительно эквивалентен 1 мг CI $^-$. Раствор хранят в склянке из темного стекла с притертой пробкой.

2.3.6. Приготовление шкалы стандартных растворов

Для определения визуального В колориметрические цилиндры вместимостью по 50 см³ вносят 0,0; 0,5; 0,7; 1,0; 1,5; 2,0; 3,5; 6,0; 10; 15; 20 и 30 см 3 рабочего раствора азотнокислого калия (1 см 3 - 0,01 мг N). Если используют цилиндры вместимостью по 100 см³, количество стандартного раствора удваивают, что соответствует содержанию нитратного азота в стандартных растворах шкалы от 0,1 до 6,0 мг/дм³ нитратного азота. В каждый цилиндр добавляют по 2 см³ фенолдисульфоновой кислоты и 5-6 см³ щелочи (NH₄OH) до максимального развития окраски. Объем раствора в цилиндрах доводят дистиллированной водой до метки и перемешивают. Приготовленная стандартная шкала может сохраняться в течение нескольких недель без изменения окраски раствора.

При определении нитратов с помощью электрофотоколориметра для построения калибровочного графика используют эти же стандартные растворы. Оптическую плотность окрашенных растворов измеряют на фотоэлектроколориметре с синим светофильтром (λ =480 нм) в кюветах с толщиной рабочего слоя 1-5 см. Из найденных значений оптических плотностей вычитают оптическую плотность нулевой пробы. Полученные результаты наносят на график.

2.4. Проведение анализа

содержании нитритов более 0,7 мг/дм3 получаются завышенные результаты (обычно в питьевых водах нитриты в этих концентрациях не встречаются). Определению мешает цветность воды (более 20-25°). В этом случае к 150 см ³ исследуемой воды добавляют 3 см³ суспензии гидроокиси алюминия, пробу тщательно перемешивают и после отстаивания в течение нескольких минут осадок отфильтровывают, первую порцию фильтрата отбрасывают. Для анализа отбирают 10 или 100 см³ прозрачной воды или фильтрата (содержание нитратного азота в этом объеме не должно превышать 0,6 мг), добавляют раствор сернокислого серебра в количестве, эквивалентном содержанию хлор-иона в исследуемой пробе. Выпаривают в фарфоровой чашке на водяной бане досуха (осадок хлорида серебра отфильтровывают в том случае, когда содержание СІ превышает 15 мг в определяемом объеме). После охлаждения сухого остатка добавляют в чашку 2 см³ раствора фенолдисульфоновой кислоты и тотчас растирают стеклянной палочкой до полного смешения с сухим остатком. Добавляют 20 см³ дистиллированной 5-6 см³ концентрированного около раствора воды аммиака максимального развития окраски. Окрашенный раствор переносят колориметрический цилиндр вместимостью 100 или 50 см³ дистиллированной водой до метки. Сравнение окраски исследуемой пробы проводят визуальным методом, пользуясь шкалой стандартных растворов, или фотометрическим методом, измеряя оптическую плотность окрашенного раствора исследуемой пробы в тех же условиях, как при построении калибровочной кривой.

2.4.1. Определению мешают хлориды в концентрации более 10 мг/дм³. Их влияние устраняют в ходе анализа добавлением сернокислого серебра. При

2.5. Обработка результатов

Содержание нитратов (X), мг/дм 3 , вычисляют по формуле в пересчете на нитратный азот

$$X = \frac{C \cdot V_1}{V},$$

где C - содержание нитратов, найденное по калибровочному графику или шкале стандартных растворов, мг/дм 3 ;

 V_1 - объем окрашенной пробы (100 или 50 см³);

 ${\it V}\,$ - объем пробы, взятый для анализа, см 3 .

Допустимое расхождение между повторными определениями $0,1\,\mathrm{mr/дm^3}$ при содержании в воде нитратного азота до $5\,\mathrm{mr/дm^3}$, при более высоких концентрациях $0,5\,\mathrm{mr/дm^3}$.

3. КОЛОРИМЕТРИЧЕСКИЙ МЕТОД С САЛИЦИЛОВОКИСЛЫМ НАТРИЕМ

3.1. Сущность метода

Метод основан на реакции нитратов с салициловокислым натрием в присутствии серной кислоты с образованием соли нитросалициловой кислоты, окрашенной в желтый цвет.

Чувствительность метода 0,1 мг/дм³ нитратного азота.

3.2. Аппаратура, материалы и реактивы

Фотоэлектроколориметр.

Баня водяная.

Посуда мерная стеклянная лабораторная по <u>ГОСТ 1770</u>, <u>ГОСТ 29227</u> вместимостью: колбы мерные 50 и 100 см 3 , пипетки 1 и 10 см 3 с делениями соответственно 0,01 и 0,1 см 3 ; пробирки с отметкой на 10 см 3 с притертой пробкой.

Чашки фарфоровые выпарительные по ГОСТ 9147.

Кислота серная по ГОСТ 4204.

Натрия гидрат окиси (натр едкий) по ГОСТ 4328.

Кобальт хлористый по ГОСТ 4525.

Калий азотнокислый по ГОСТ 4217.

Калий-натрий виннокислый по ГОСТ 5845.

Вода дистиллированная по ГОСТ 6709.

Натрий салициловокислый.

Палочки стеклянные.

Все реактивы должны быть квалификации "чистый для анализа" (ч.д.а.) и не должны содержать примесей нитратов.

3.3. Подготовка к анализу

- 3.3.1. Приготовление основного стандартного раствора азотнокислого калия 0,7218 г азотнокислого калия KNO_3 , высушенного при (105 ± 2) °C, растворяют в дистиллированной воде, добавляют 1 см 3 хлороформа и доводят объем до 1 дм 3 .
 - 1 см³ раствора содержит 0,1 мг нитратного азота.
 - 3.3.2. Приготовление рабочего стандартного раствора азотнокислого калия
- $10~{\rm cm}^3~{\rm ochoshoro}$ раствора разбавляют в мерной колбе дистиллированной водой до $100~{\rm cm}^3$.
 - 1 см³ этого раствора содержит 0,01 мг нитратного азота. Применяют свежеприготовленный раствор.
 - 3.3.3. Приготовление раствора виннокислого калия-натрия
- 30 г калия-натрия виннокислого растворяют в 70 см³ дистиллированной воды.
 - 3.3.4. Приготовление 0,5%-ного раствора салициловокислого натрия
- 0,5 г салициловокислого натрия растворяют в 100 см³ дистиллированной воды.

Применяют свежеприготовленный раствор.

- 3.3.5. Приготовление 10 н. раствора едкого натра
- 400 г едкого натра растворяют в дистиллированной воде и после охлаждения доводят объем до 1 дм³.
 - 3.3.6. Приготовление раствора сернокислого серебра Раствор готовят по п.2.3.5.

3.4. Проведение анализа

3.4.1. Определению мешают: цветность воды, влияние которой устраняют так же, как и в методе с фенолдисульфокислотой; хлориды в концентрации, 200 мг/дм³, которые удаляют добавлением превышающей сернокислого серебра к 100 см3 исследуемой воды количестве. хлор-иона. Осадок эквивалентном содержанию хлорида серебра отфильтровывают отделяют центрифугированием; или нитриты концентрации 1-2 мг/дм³ и железо в концентрации более 0,5 мг/дм³. Влияние железа может быть устранено добавлением 8-10 капель раствора калиянатрия виннокислого перед выпариванием воды в фарфоровой чашке.

10 см³ исследуемой воды помещают в фарфоровую чашку. Прибавляют 1 см³ раствора салициловокислого натрия и выпаривают на водяной бане досуха. После охлаждения сухой остаток увлажняют 1 см³ концентрированной серной кислоты, тщательно растирают его стеклянной палочкой и оставляют на 10 мин. Затем добавляют 5-10 см³ дистиллированной воды и количественно переносят в мерную колбу вместимостью 50 см³. Прибавляют 7 см³ 10 н. раствора едкого натра, доводят объем дистиллированной водой до метки и перемешивают. В течение 10 мин после прибавления едкого натра окраска не изменяется. Сравнение интенсивности окраски исследуемой пробы проводят фотометрическим методом, измеряя оптическую плотность раствора с фиолетовым светофильтром в кюветах с толщиной рабочего слоя 1-5 см. Из найденных значений оптической плотности вычитают оптическую плотность нулевой пробы и по калибровочному графику находят содержание нитратов.

3.4.2. Построение калибровочного графика

Для приготовления стандартных растворов в колориметрические пробирки с отметкой на 10 см³ отбирают 0,0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0 и 10 см³ рабочего стандартного раствора азотнокислого калия (1 см³ - 0,01 мг N) и доводят дистиллированной водой до отметки. Содержание нитратного азота в растворах соответственно будет равно 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; 10,0 мг/дм³. Затем растворы переносят в фарфоровые чашки, прибавляют по 1 см³ раствора салициловокислого натрия и выпаривают на водяной бане досуха. Сухой остаток обрабатывают так же, как описано при анализе пробы исследуемой воды. Оптическую плотность окрашенных растворов измеряют с помощью электрофотоколориметра, используя фиолетовый светофильтр и кюветы с толщиной рабочего слоя 1-5 см. Из полученных величин вычитают оптическую плотность нулевой пробы и результаты наносят на график.

3.5. Обработка результатов

Содержание нитратов (X), мг/дм 3 , вычисляют по формуле в пересчете на нитратный азот

$$X = C$$
,

где $\mathbb C$ - содержание нитратов, найденное по графику, мг/дм 3 . Электронный текст документа подготовлен АО "Кодекс" и сверен по:

официальное издание

Контроль качества воды: Сб. ГОСТов. - М.: ФГУП "СТАНДАРТИНФОРМ", 2010