Практическое занятие № 1-2

Основные определения и понятия термодинамики

Пример 1.1. Расчитайте изменение внутренней энергии при нагревании 10 г водорода (двухатомный идеальный газ) при постоянном объеме от 300 до 400 К.

Решение. Изохорная теплоемкость двухатомного газа – $C_V = \frac{5}{2}R$. Изменение внутренней энергии при V = const равно:

$$QV = \Delta U = nC_V(T_2 - T_1) = \frac{m}{M}C_V(T_2 - T_1) = \frac{10}{2} \cdot \frac{5}{2}$$

 $\cdot 8,314 \cdot (400 - 300) = 10387,5 \,\text{Дж} = 10,39 \,\text{кДж},$

где M — молярная масса. Молярная масса водорода равна 2 г/моль.

Пример 1.2. Определите количество теплоты, необходимое для нагревания 8 г гелия (одноатомный газ) от 288 до 298 K, V = const, $M_{\text{He}} = 4 \text{ г/моль}$.

Решение. Изохорная теплоемкость одноатомного газа (C_V) равна $\frac{3}{2}R$. Количество теплоты Q рассчитывается следующим образом:

$$Q_V = nC_V(T_2 - T_1) = \frac{m}{M}C_V(T_2 - T_1) = \frac{8}{4} \cdot \frac{3}{2} \cdot 8,314 \cdot (298 - 288) = 249,3$$
 Дж.

Термохимия. Закон Гесса

Пример 1.3. Определите тепловой эффект реакции

$$Al_2O_3_{KODVHJ} + 3SO_2_{(\Gamma)} = Al_2(SO_4)_3_{(T)} + \Delta U_x$$

если реакция протекает при 298 К в автоклаве при постоянном объеме, а тепловой эффект при P = const равен -573,4 кДж.

Решение. Тепловой эффект при постоянном объеме рассчитаем по формуле: изменение числа молей газообразных продуктов реакции $\Delta n = -3$, т.к. Al₂O₃ и Al₂(SO₄)₃ – твердые вещества:

$$\Delta_r U_{298} = \Delta_r H_{298}^0 - \Delta nRT = -573,4 \cdot 10^3 + 3 \cdot 8,31 \cdot 298 = -566,0 \cdot 10^3$$
Дж.

Пример 1.4. Рассчитайте тепловой эффект реакции гидрирования ацетилена по теплотам образования веществ.

Решение. Уравнение реакции гидрирования ацетилена:

$$C_2H_{2(\Gamma)} + 2H_{2(\Gamma)} = C_2H_{6(\Gamma)}$$
.

Тепловой эффект реакции определяется по первому следствию из закона Гесса. Необходимые для решения данные выпишем из справочника [4] (табл.1.1).

Таблица 1.1 Теплоты образования веществ

Вещество	C_2H_2 (Γ)	$H_{2(\Gamma)}$	$C_2H_{6(\Gamma)}$
ΔH_{298}^0 ,	226,75	0	- 84,67
кДж/моль			

$$\Delta_r H_{298}^0 = \Delta H_{298}^0 (C_2 H_6) - \Delta H_{298}^0 (C_2 H_2) = (-84,67 - 226,75) =$$

$$= -311,42 \text{ кДж}.$$

Пример 1.5. Определите тепловой эффект при 500 К реакции образования газообразного ацетона из метана и диоксида углерода при P и V = const:

$$2CH_{4(\Gamma)} + CO_{2(\Gamma)} = CH_3COCH_{3(\Gamma)} + H_2O_{(\Gamma)}.$$

Известно, что

$$C_{P_{\text{H}_2\text{O}}} = 30,146 \cdot 10^3 + 11,305T$$
 Дж/(кмоль·К),

$$C_{P\text{CH}_3\text{COCH}_3} = 22,489 \cdot 10^3 + 201,926T - 63,576 \cdot 10^{-3} T^2$$
 Дж/(кмоль·К),

$$C_{P\text{CO}_2} = 44,\!173\cdot 10^3 + 9,\!044T - 8,\!541\cdot 10^3 T^2$$
Дж/(кмоль·К),

$$C_{P\mathrm{CH}_4} = 17,484 \cdot 10^3 + 60,502T$$
 - 1,118 · 10 $^{-3}T^2$ Дж/(кмоль·К),

Решение. Необходимые для решения задачи энтальпии образования выпишем из справочника [4] (табл.1.2).

Теплоты образования веществ

CH₃COCH_{3 (г)}

Таблица 1.2

Определяем тепловой эффект реакции	$\Delta_r H_{298}^0$, используя первое следствие
из закона Гесса.	

 $CO_{2(\Gamma)}$

-393.8

-74,9

$$\Delta_r H_{298}^0 = (\Delta H_{298}^0 (\text{H}_2\text{O}) + \Delta H_{298}^0 (\text{CH}_3\text{COCH}_3)) - (\Delta H_{298}^0 (\text{CO}_2) + \Delta H_{298}^0 (\text{CH}_4) = 84,802 \cdot 10^6 \text{ Дж.}$$

Согласно уравнению Кирхгофа после интегрирования тепловой эффект реакции ΔH может быть выражен уравнением

$$\Delta H_T = \Delta H_{298}^0 + a(T - 298) + \frac{\Delta b}{2}(T^2 - 298^2) - \frac{\Delta c}{3}(T^3 - 298^3) - \Delta c'\left(\frac{1}{T} - \frac{1}{298}\right).$$

Следовательно,

Вещество

 $\Delta H_{208}^{0} \cdot 10^{6}$

Дж/кмоль

$$\Delta H_0 = \Delta H_{298}^0 - a \, 298 - \frac{\Delta b}{2} \, 298^2 - \frac{\Delta c}{3} \, 298^3 + \frac{\Delta c'}{298}.$$

$$\Delta a = \sum a = \sum a = \sum (30.146 + 32.489) = (44.173 + 3.17)$$

$$\Delta a = \sum a_{\text{прод}} - \sum a_{\text{pear}} = [(30,146 + 22,489) - (44,173 + 2.17,481)] \cdot 10^3 = -26,512 \cdot 10^3;$$

$$\frac{\Delta b}{2} = \frac{1}{2} \left(\sum b_{\text{прод}} - \sum b_{\text{реаг}} \right) = \frac{1}{2} [(11,305 + 201,926) - (9,044 + 2.60,502)]$$

$$= - -41,5591 \cdot 10^{3};$$

$$\frac{\Delta c}{3} = \frac{1}{3} \left(\sum c_{\text{прод}} - \sum c_{\text{pear}} \right) = \frac{1}{3} \left(-63,567 - 2.1,118 \right) \cdot 10^{-3} = -21,93.10^{-3};$$

$$\Delta c' = -(-8,541) \cdot 10^8 = 8,541 \cdot 10^8;$$

$$\Delta H_0 = 84,802 \cdot 10^6 + 26,512 \cdot 10^3 \cdot 298 - 41,591 \cdot 298^2 + 21,93 \cdot 10^3 \cdot 298^3 + 21,93 \cdot 10^3 \cdot 10^3 \cdot 298^3 + 21,93 \cdot 10^3 \cdot 10^3 \cdot 298^3 + 21,93 \cdot 10^3 \cdot 10$$

$$+\frac{8,541\cdot10^3}{298} = 97,4864\cdot10^6$$
 Дж.

Зависимость теплового эффекта реакции от температуры выразится уравнением:

$$\Delta H_T = 97,4864 \cdot 10^6 - 26,512 \cdot 10^3 T + 41,591 T^2 - 21,934 \cdot 10^{-3} T^3 - \frac{8,541 \cdot 10^8}{T}$$

или

$$\Delta H_{500} = 97,4864 \cdot 10^6 - 26,512 \cdot 10^3 \cdot 500 +$$

$$+41,591\cdot500^2 - 21,934\cdot10^{-3}\cdot500^3 - \frac{8,541\cdot10^8}{500} = 92,1794$$
 Дж.

Далее определяем тепловой эффект при постоянном объеме по формуле: $\Delta n = 2 - 3 = -1$.

$$\Delta U = \Delta H - \Delta nRT = 97,1794 \cdot 10^6 - 8,315 \cdot 10^3 \cdot 500 (-1) = 96,3369 \cdot 10^6$$
 Дж.

Пример 1.6. Определите тепловой эффект химической реакции при 500 К и стандартном давлении

$$CH_3OH_{(\Gamma)} + 1.5 O_{2(\Gamma)} = CO_{2(\Gamma)} + 2H_2O_{(\Gamma)}$$
.

Теплоемкости всех веществ, участвующих в химической реакции, постоянны.

Решение. Тепловой эффект реакции при T = 298 К находим по уравнению (1.19). Необходимые для решения задачи данные приведены в справочнике [4] (табл.1.3).

Таблица 1.3 Теплоты образования и теплоемкости веществ

Вещество	СН3ОН (г)	О2 (г)	CO _{2 (Γ)}	Н2О (г)
$\Delta H_{298}^{0},$ кДж/моль	- 201,2	0	- 393,51	- 241,84
$\Delta C_{P,298}^0$, Дж/(моль·К)	43,9	29,36	37,13	33,56

Согласно первому следствию из закона Гесса:

$$\Delta_r H_{298}^{\,0} = (-393,51) + 2(-241,84) - (-201,2) = -675,99$$
 қДж.

$$\Delta C_{P,298}^0 = 37,13 + 2.33,56 - 43,9 - 1,5.29,36 = 16,31 Дж/К.$$

$$\Delta_r H_{500}^0 = -675,99.10^3 + 16,31(500 - 298) = -672,7.10^3 Дж.$$

2. Энтропия

Пример 2.1. Определите стандартное изменение энтропии при температуре 298 К для реакции:

$$2SO_{2(\Gamma)} + O_{2(\Gamma)} = 2SO_{3(\Gamma)}.$$

Решение.

Изменение энтропии для химической реакции рассчитывают по уравнению (2.16). Необходимые для решения задачи данные возьмем из справочника [4] (табл. 2.1).

Таблица 2.1

Вещество	$\mathrm{SO}_{2(\Gamma)}$	$O_{2(\Gamma)}$	$\mathrm{SO}_{3(\Gamma)}$
S^0_{298} , Дж/(моль·К)	248,1	205,0	256,7

Значение энтропии веществ

$$\Delta_r S_{298}^0 = 2 S_{298}^0 (\text{SO}_{3(\Gamma)}) - 2 S_{298}^0 (\text{SO}_{2(\Gamma)}) - S_{298}^0 (\text{O}_{2(\Gamma)}) = 2 \cdot 256,7 - 2 \cdot 248,1 - 205,0 = -187,8 \ \text{Дж/(K)}.$$

Пример 2.2. Определить изменение энтропии при изотермическом расширении 1 моля идеального газа от 101,3 до 10,1 кПа.

Решение. Для вычисления энтропии воспользуемся формулой (2.10).

$$\Delta S = 8.314 \cdot 2.3 \cdot \lg \cdot (1.013 \cdot 10^5 / 0.1013 \cdot 10^5) = 19.11 \ \text{Дж/(моль·К)}.$$

Энергия Гиббса

Пример 2.3. Рассчитайте изменение энергии Гиббса реакции горения ацетилена и определите возможность ее протекания при стандартных условиях.

Решение. Запишем уравнение реакции:

$$C_2H_{2(\Gamma)} + 2.5 O_{2(\Gamma)} = 2CO_{2(\Gamma)} + H_2O_{(K)}$$

Изменение энергии Гиббса для химической реакции рассчитывают по уравнению (2.20). Необходимые для решения задачи справочные данные приведены в справочнике [4] (табл.2.2).

Таблица 2.2

Вещество	С2Н2 (г)	О2 (г)	CO _{2 (Γ)}	Н2О (ж)
$\Delta G_{298}^{0},$ кДж/моль	209,2	0	- 394,4	- 237,3

$$\Delta_r G_{298}^0 = 2\Delta G_{298}^0$$
 (CO₂) + ΔG_{298}^0 (H₂O) - ΔG_{298}^0 (C₂H₂) - 2,5 ΔG_{298}^0 (O₂) = = -1235,3 кДж.

Эта реакция может протекать самопроизвольно в данных условиях, т.к. $\Delta G < 0.$

Пример 2.4. Рассчитайте изменение энергии Гиббса в реакции

$$CO_{(\Gamma)}$$
 + 0,5 $O_{2(\Gamma)}$ = $CO_{2(\Gamma)}$

при температуре 500 К.

Решение. Термодинамические данные при стандартных условиях выпишем из справочника [4] (табл.2.3).

Вещество	$\mathrm{CO}_{(\Gamma)}$	О2 (г)	СО _{2 (г)}
ΔH_{298}^{0} , кДж/моль	-110,5	0	-393,5
S^0_{298} , Дж/(моль·К)	197,6	205,0	213,7
C_P , Дж/(моль·К)	29,14	29,40	34,57

Термодинамические характеристики веществ

Для вышеприведенной реакции рассчитаем $\Delta_r \overline{H_{298}^0}$, $\Delta_r S_{298}^0$ по формулам:

$$\Delta_r H_{298}^0 = \Delta H_{298}^0 (\text{CO}_2) - \Delta H_{298}^0 (\text{CO}) - 0.5 \Delta H_{298}^0 (\text{O}_2) =$$

$$= -393.5 + 110.5 = -283.0 \text{ кДж}.$$

$$\Delta_r S_{298}^0 = \Delta S_{298}^0 (\text{CO}_2) - \Delta S_{298}^0 (\text{CO}) - 0.5 \cdot \Delta S_{298}^0 (\text{O}_2) =$$

$$= 213.7 - 197.6 - 0.5 \cdot 205.0 = -86.4 \text{ Дж/K}.$$

Пусть $\Delta C_P = \text{const.}$

$$\Delta_r C_P = C_P \text{ (CO}_2) - C_P \text{ (CO)} - 0.5 \cdot C_P = 34.57 - 29.14 - 0.5 \cdot 29.40 = -9.27 \text{ Дж/К}.$$

Стандартный тепловой эффект реакции при температуре 500 К рассчитываем по формуле Кирхгофа в интегральной форме:

$$\Delta_r H_{500}^0 = \Delta_r H_{298}^0 + \int_{298}^{500} \Delta C_p d\Gamma = -283000 + (-9,27) \cdot (500 - 298) =$$

$$= -284.9 \text{ кЛж}.$$

Стандартное изменение энтропии в реакции при 500 К можно рассчитать по формуле:

$$\Delta_r S_{500}^0 = \Delta_r S_{298}^0 + \int_{298}^{500} \frac{\Delta C_P}{T} dT = -86,4 + (-9,27) \cdot \ln(500/298) = -91,2$$
 Дж/К.

Стандартное изменение энергии Гиббса при 500 К рассчитаем по формуле:

$$\Delta_r G_{500}^0 = \Delta_r H_{500}^0 - T \cdot \Delta_r S_{500}^0 = -284900 - 500 \cdot (-91,2) = -239,3$$
 кДж.

Эта реакция может протекать самопроизвольно в данных условиях, т.к. $\Delta G < 0$.