Лабораторная работа

Соединения азота. Фосфаты. Хлориды. Сульфаты

Цель работы

Овладение навыками определения содержания соединений азота, фосфатов, хлоридов и сульфатов.

Теоретические положения

Соединения азота Общее содержание азота в природных водах - это сумма минерального и органического азота. Средняя концентрация общего азота в природных водах колеблется в значительных пределах и зависит от трофности водного объекта: для олиготрофных водоемов изменяется в пределах 0.3-0.7, для мезотрофных -0.7-1.3; для эвтрофных 0.8-2.0 мг/дм³.

Минеральный азот в природных водах содержится в форме аммиака, солей аммония, нитритов и нитратов. Соотношение данных форм позволяет судить о протекающих в водоемах процессах самоочищения, о характере и времени загрязнения воды. Повышение концентрации ионов аммония и нитритов обычно указывает на протекание процессов аммонификации и начале нитрификации, т.е. на недавнее органическое загрязнение, в то время как высокое содержания нитратов обычно характерно для старого загрязнения.

При относительно высоком содержании аммонийных ионов или аммиака, превышающем $10~\rm Mr/дm^3$, рекомендуется титриметрический метод определения с предварительной отгонкой аммиака в раствор борной кислоты. Фотометрический метод с реактивом Несслера тоже возможен только с предварительной отгонкой аммиака. Фотоколориметрический фенольногипохлоритный метод возможен без предварительной отгонки. Для санитарного контроля за качеством воды обязательно указывают форму выражения результатов ($N-NH_4$ $^+$ или NH_4 $^+$). Для выражения результатов в форме аммонийного азота $N-NH_4$ $^+$, мг /дм 3 полученную величину NH_4 $^+$, мг/дм 3 умножают на коэффициент 0,77.

Фотометрический метод определения аммиака с реактивом Несслера

Сущность метода. В щелочном растворе аммиак реагирует с тетраиодомеркуратом (II) калия, образуя различные желто-коричневые соединения, выпадающие в осадок или (при малых концентрациях) переходящие в коллоидные растворы. В условиях фотометрического определения реакция в основном проходит по уравнению

$$2 \text{ HgI}_4^{2-} + \text{NH}_3 + \text{OH}^- \text{NH}_2 \text{HgI}_3 + 5 \text{ I}^- + \text{H}_2 \text{O}$$

Содержание азота, ртути и иодида в осадке выражается отношением 1:2:3, однако возможно присутствие в осадке и других соединений $(OHg_2NH_2I$ и др.). Некоторая неопределенность состава образующегося соединения требует точного соблюдения условий проведения определения как при анализе пробы, так и при построении калибровочного графика.

Предел обнаружения 0.05 мг/дм³ NH_4^+ . Диапазон измеряемых количеств аммонийных ионов в пробе 0.005 - 0.15 мг

На основании опыта сделайте выводы о сравнительной растворимости сульфатов кальция и бария.

Фосфаты

Под общим фосфором понимают сумму минерального и органического фосфора. Основным фактором, определяющим концентрацию фосфора в воде, так же, как и в случае азота, является обмен между его минеральными и органическими формами, с одной стороны, и живыми организмами - с другой. Соединения минерального фосфора поступают в природные воды в результате выветривания и растворения пород, содержащих ортофосфаты (апатиты и фосфориты), с поверхности водосбора в виде минеральных удобрений с поверхностным стоком с полей, со стоками с ферм (0,01-0,05 кг/сутки на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003-0,006 кг/сутки на одного жителя), с некоторыми производственными отходами, а также образуются при биологическом разложении остатков животных и растительных организмов. Фосфор – важнейший биогенный элемент, чаще всего лимитирующий продуктивность водоемов. Поэтому поступление избытка соединений фосфора, особенно в непроточные и малопроточные водоемы, приводит к эфтрофикации.

Поэтому определение содержания общего фосфора (растворенного и взвешенного в виде органических и минеральных соединений) включено в программы обязательных наблюдений за составом природных вод. Фосфор является важнейшим показателем трофического статуса природных водоемов.

Основной формой неорганического фосфора при значениях рН водоема больше 6,5 является ион HPO_4 $^{2-}$ (около 90 %). В кислых водах неорганический фосфор присутствует преимущественно в виде H_2PO_4 $^-$.

Концентрация общего растворенного фосфора в незагрязненных природных водах изменяется от 5 до 200 мкг/дм ³. Концентрация фосфатов в природных водах очень мала - сотые, редко десятые доли миллиграммов

фосфора в 1 дм³, в загрязненных водах она может достигать нескольких миллиграммов в 1 дм³. Содержание соединений фосфора подвержено значительным сезонным колебаниям. Минимальные концентрации фосфора в поверхностных водах наблюдаются обычно весной и летом, максимальные – осенью и зимой.

Хлориды

Хлориды являются составной частью большинства природных вод. Хлориды — преобладающие анионы в высокоминерализованных водах, большое содержание хлоридов геологического происхождения в поверхностных водах — явление редкое. Первичными источниками хлоридов в воде являются магматические породы, соленосные отложения, в основном галит. Хлориды поступают в воду в результате обмена с океаном через атмосферу, посредством взаимодействия атмосферных осадков с почвами, особенно засоленными, а также при вулканических выбросах. Поэтому обнаружение большого количества хлоридов является показателем загрязнения воды бытовыми и некоторыми промышленными сточными водами.

Повышенное содержание хлоридов ухудшают вкусовые качества воды, делают ее малопригодной для питьевого водоснабжения и ограничивают применение в ряде технических и хозяйственных целей, а также для орошения сельскохозяйственных угодий. Если в питьевой воде есть ионы натрия, то при концентрации хлоридов более 250 мг/дм3 у воды появляется соленый вкус. Данные о том, что высокие концентрации хлоридов оказывают вредное воздействие на здоровье человека, отсутствуют.

Анализ хлоридов в питьевых, поверхностных и сточных водах проводится аргентометрическим титрованием по методу Мора или потенциометрическим методом.

Сульфаты

Естественное содержание сульфатов в поверхностных и грунтовых обусловлено выветриванием и растворением серосодержащих минералов, основном гипса, окислением сульфидов биохимическими процессами в водоносных слоях. В северных водоемах обычно сульфатов немного; В ХЫНЖОІ районах, воды где сульфатов увеличивается. минерализованы, содержание Содержание сульфатов в водоемах может быть повышенным вследствие сброса в них серосодержащих сточных вод. В больших количествах сульфаты содержатся в шахтных водах и в промышленных стоках производств, в которых используется серная кислота.

Концентрация сульфатов в природной воде изменяется в широких пределах. В речных водах и в водах пресных озер содержание сульфатов

колеблется от 5-10 до 60 мг/дм³, в дождевых водах— от 1 до 10 мг/дм³, в подземных водах содержание сульфатов часто значительно выше.

Повышенное содержание сульфатов ухудшают органолептические свойства воды и оказывают слабительное действие на организм человека.

Оборудование и реактивы

- 1. Бромфеноловый синий, метиловый красный, серная кислота, 0,02 н. раствор, бюретки, конические колбы, безаммиачная вода Реактив Несслера, хлорид аммония, раствор с содержанием ионов аммония 0,05 мг/см³ (свежеприготовленный), мерные колбы на 50 см³, мерные пробирки, пипетка на 5 см.
- 2. Фотоэлектроколориметр Колбы мерные объемом 50, 100, 500, $1000 \, \mathrm{cm}^3$ Фильтры беззольные «синяя лента» Воронки лабораторные стеклянные Бюретки объемом 25 $\, \mathrm{cm}^3$ Стаканы объемом 100 или 200 $\, \mathrm{cm}^3$ Пипетки мерные $1 \, \mathrm{cm}^3$, $5 \, \mathrm{cm}^3$.
- 3. Нитрат серебра, раствор 0,01 моль-экв/дм³, хлорид натрия, раствор 0,01 моль-экв/дм³, хромат калия, 5 % раствор, бюретки, конические колбы для титрования
- 4. Фотоколориметр, хлорид бария, насыщенный раствор, серная кислота, раствор с концентрацией сульфат аниона 0.2 мг/см^3 , желатин 0.5 % раствор, мерные колбы на 100 см^3 , мерная колба или пипетка Мора на 50 см^3 , бюретка на 25 см^3 , пипетки на $2 \text{ и } 5 \text{ см}^3$

Методика и порядок выполнения работы

Опыт №1. Фотометрический метод определения аммиака с реактивом Несслера

Построение градуировочного графика. В мерные колбы на 50 см3 вносят 0,1; 0,5; 1,0; 1,5; 2,0; 3,0 см3 рабочего стандартного раствора хлорида аммония и доводят каждый раствор до метки безаммиачной водой. Концентрации NH4 + в полученных растворах равны соответственно 0,1; 0, см3 5; 1,0; 1,5; 2,0; 3,0 мг/дм3 . Добавляют 20-30 см3 безаммиачной воды, 1 мл реактива Несслера, доводят объем водой до метки, перемешивают. Дают постоять 10 мин для развития окраски и измеряют оптическую плотность в кювете с толщиной слоя 2 см при = 425 нм (фиолетовый светофильтр).

Раствор-фон готовят в колбе на $50~{\rm cm}^3$, используя безаммиачную воду и то же количество реактива Несслера. Калибровочный график строят в координатах оптическая плотность – концентрация ионов NH4+, MT/M3.

Из мерной колбы, содержащей отогнанный из пробы аммиак в растворе борной кислоты, отбирают аликвотную часть. Оптимальное содержание для

колориметрирования около 0,15 мг $\mathrm{NH_4}^+$ в определяемом объеме. Например, берут аликвоту $10~\mathrm{cm}^3$. Разбавляют отобранную порцию безаммиачной водой, приливают $1~\mathrm{cm}^3$ реактива Несслера и доводят объем до $50~\mathrm{cm}^3$, дают постоять не меньше $10~\mathrm{мин}$. Оптическую плотность полученного окрашенного раствора измеряют, как описано выше.

Расчет. Содержание аммонийных ионов (X) в мг/дм³ находят по формуле:

$$X = \frac{C \cdot 50 \cdot V_{omzoh}}{V_{npo\delta \omega} \cdot V_{anuk вom \omega}},$$

где C — концентрация ионов аммония, найденная по графику, мг/дм 3 ;

50-объем раствора, приготовленного для фотоколориметрирования, см³;

 $V_{npo\delta \omega}$ — объем пробы воды, взятой для анализа или для отгона , см 3 ;

 $V_{\mathit{отгон}}$ — объем, до которого был разбавлен отгон, см³;

 $V_{\text{аликвоты}}$ -объем аликвоты отгона, взятой для анализа, см³.

Опыт № 2. Определение содержания фосфатов в пробе

В мерную колбу на 100 см³ наливают 50 см³ пробы, отфильтрованной через плотный бумажный фильтр (синяя лента), прибавляют 5,0 см³ смешанного реактива и через 30 секунд — 0,5 см³ раствора аскорбиновой кислоты. Смесь перемешивают (до метки дистиллированную воду не добавляют!). Через 15 мин измеряют оптическую плотность полученного раствора по отношению к нулевому раствору при длине волны 690 нм, кювета 5 см. Если содержание фосфат — ионов велико, то пробу воды уменьшают, добавляют к ней определенный объем дистиллированной воды так, чтобы суммарный объем жидкости составил 50 см³, и далее проводят анализ, как описано выше.

Расчет. Содержание фосфат-ионов X (мг/дм 3) рассчитывают по формуле:

$$X = \frac{C \cdot 50}{V_{npo\delta bi}},$$

где С – концентрация фосфат-ионов, найденная по графику, мг/дм 3 ;

50 – объем, до которого была разбавлена проба, см³;

 $V_{\text{пробы}}$ – объем воды, взятый для анализа, см 3 .

Опыт № 3. Аргентометрическое определение хлоридов по методу Мора

При содержании хлоридов менее 250 мг/дм³ берут 100 см³ фильтрованной испытуемой воды. При большем содержании хлоридов берут

 $10-50~{\rm cm}^3$ исследуемой воды и разбавляют до $100~{\rm cm}^3$ дистиллированной водой. В две конические колбы для титрования вносят по $100~{\rm cm}^3$ анализируемой воды, прибавляют по $5~{\rm kaneлb}$ раствора ${\rm K_2CrO_4}$. Раствор в одной колбе титруют $0{,}01~{\rm H}~{\rm AgNO_3}$ до изменения окраски раствора по сравнению с окраской во второй колбе (цветной свидетель).

Опыт № 4. Турбидиметрическое определение сульфатов

Стандартизация титранта. Для стандартизации титранта в коническую колбу вносят $10 \text{ см}^3 0{,}01 \text{ H}$ раствора NaCд и 90 см^3 дистиллированной воды, прибавляют 5 капель K_2CrO_4 . Содержимое колбы титруют $0{,}01 \text{ H}$ раствором $AgNO_3$ до перехода лимонно-желтой окраски мутного раствора в оранжево-красную, не исчезающую в течение 15-20 сек.

Поправочный коэффициент к титру $AgNO_3$ рассчитывают по результатам трех титрований

$$K = \frac{30}{V_1 + V_2 + V_3},$$

где V_1, V_2, V_3 – объемы AgNO3, пошедшие на каждое из трех титрований, см³.

Расчет. Содержание хлорид-иона X (мг/дм³) рассчитывают по формуле:

$$X = \frac{V_{\textit{mump.}} \times H \times K \times \mathcal{I}_{\textit{Cl}} \times 1000}{V_{\textit{ndobi}}},$$

где $V_{mump.}$ – количество раствора AgNO₃, пошедшее на титрование, см³;

H – концентрация титранта – нитрата серебра, моль-экв/дм 3 ;

К – поправочный коэффициент к концентрации титранта;

 \Im_{Cl} – эквивалент хлорид-иона, г/моль-экв;

 $V_{пробы}$ – объем воды, взятой для анализа, см³;

1000 - коэффициент для перехода от граммов к миллиграммам.

Указания по оформлению отчета

Отчет о работе должен включать:

- а) название выполняемой работы, цель;
- б) перечисление оборудования и реактивов;
- в) краткие сведения по теме «Соединения азота. Фосфаты. Хлориды. Сульфаты»;
 - г) порядок выполнения работы;

- д) уравнения химических реакций и объяснение полученных результатов;
 - е) выводы.