Элементарные методы решения матричных игр 2×2 , $2 \times m$, $m \times 2$

Наиболее простой матричной игрой является игра 2×2 , в которой игроки имеют по две чистых стратегии.

Пусть матрица такой игры

$$H = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}. \tag{2.1}$$

Если седловой точки нет, то решением игры являются смешанные

стратегии
$$X^* = \{x_1; x_2\}$$
 (2.2)

$$Y^* = \{y_1; y_2\}. \tag{2.3}$$

Согласно основной теореме теории игр, применение оптимальной стратегии X^* игроком А обеспечивает получение выигрыша V при любых стратегиях игрока В. Сказанное приводит к системе уравнений:

$$\begin{cases} a_{11}x_1 + a_{21}x_2 = V & \text{ При стратегии } \mathbf{B}_1 \text{ игрока } \mathbf{B}, \\ a_{12}x_1 + a_{22}x_2 = V & \text{ При стратегии } \mathbf{B}_2 \text{ игрока } \mathbf{B}. \end{cases}$$

Кроме того, $x_1 + x_2 = 1$.

Решение этих уравнений даёт:

$$x_1 = \frac{a_{22} - a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}},$$
(2.4)

$$x_2 = \frac{a_{11} - a_{12}}{a_{11} + a_{22} - a_{12} - a_{21}},$$
(2.5)

$$V = \frac{a_{11}a_{22} - a_{12}a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}}. (2.6)$$

Аналогично, применение оптимальных стратегии $Y^* = \{y_1; y_2\}$ обеспечивает проигрыш V игроку В при любых стратегиях A, что приводит к системе

$$\begin{cases}
 a_{11}y_1 + a_{12}y_2 = V, \\
 a_{21}y_1 + a_{22}y_2 = V, \\
 y_1 + y_2 = 1.
\end{cases}$$
(2.7)

Ее решение даётся формулами

$$y_1 = \frac{a_{22} - a_{12}}{a_{11} + a_{22} - a_{12} - a_{21}},$$
 (2.8)

$$y_1 = \frac{a_{11} - a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}}. (2.9)$$

Пример (п.2.1)

Во многих учебниках приводится пример игры в «орла и решку», суть которой состоит в следующем. Каждый из двух партнёров, не зная хода другого, кладёт свою монету орлом или решкой вверх и при совпадении наименований второй игрок (В) платит первому (А) единицу, а при несовпадении первый платит второму. Очевидно платёжная матрица такой игры будет:

$$H = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$

Седловой точки нет. Тогда, согласно формул: (2.4), (2.5), (2.6), (2.8) и (2.9), оптимальными стратегиями будут

$$X^* = \left\{\frac{1}{2}; \frac{1}{2}\right\}, \ Y^* = \left\{\frac{1}{2}; \frac{1}{2}\right\},$$
 цена игры $V = 0$.

Примечание. Отмечу, что матрица этой игры симметрична и на первый взгляд может показаться, что симметричность матрицы ведёт к справедливой (безобидной) игре для обоих игроков. На самом деле симметричность не гарантирует справедливости, напротив, кососимметричные матрицы (когда $H^T = -H$) соответствуют совершенно справедливой игре, то есть при оптимальных стратегиях, как это легко установить, цена игры V = 0.

Пример (п.2.2)

Цех заготовитель поставляет в сборочный цех детали двух видов а и b. По договору между цехами оговорены ежедневно два срока поставки этих деталей, причём, при поставке в первый срок деталей вида «а» сборочный цех платит заготовительному премию 50 руб., при поставке же изделий «а» выплачивается премия 20 руб. При поставке же изделий вида «b» в первый срок премия

составляет 30 руб., а во второй – 40 руб. Определить оптимальные стратегии поставок и получения деталей.

Решение. Принимая цех-заготовитель за игрока A, а сборочный за B, составим матрицу игры.

Таблица 2.1 Матрица игры заданная таблицей

	І срок	II срок
Детали «а»	50	20
Детали «b»	30	40

Значит,
$$H = \begin{pmatrix} 50 & 20 \\ 30 & 40 \end{pmatrix}$$
,

$$\alpha = \max_{i} \min_{j} a_{ij} = \max\{20,30\} = 30,$$

$$\beta = \min_{j} \max_{i} a_{ij} = \min\{50;40\} = 40,$$

 $\alpha < \beta$, следовательно, седловой точки нет. Для нахождения оптимальных стратегий применим формулы (2.4), (2.5), (2.6), (2.8) и (2.9):

$$x_{1} = \frac{40 - 30}{50 + 40 - 20 - 30} = \frac{1}{4}; \quad x_{2} = \frac{50 - 20}{50 + 40 - 20 - 30} = \frac{3}{4};$$

$$y_{1} = \frac{40 - 20}{40} = \frac{1}{2}; \quad y_{2} = \frac{50 - 30}{40} = \frac{1}{2};$$

$$V = \frac{50 \cdot 40 - 20 \cdot 30}{40} = 35 \text{ (py6.)}.$$

Таким образом, цех-изготовитель поставляет детали вида а и b с вероятностями $x_1 = \frac{1}{4}$, $x_2 = \frac{3}{4}$, при этом гарантированная премия 35 рублей, а сборочный цех получает эти детали в сроки I и II с вероятностями $y_1 = \frac{1}{2}$, $y_2 = \frac{1}{2}$ и выплачивает 35 рублей премии заготовительному цеху ежедневно. Полученные вероятности и определяют оптимальные стратегии

$$X^* = \left\{\frac{1}{4}; \frac{3}{4}\right\}, Y^* = \left\{\frac{1}{2}; \frac{1}{2}\right\}.$$

Примечание. Игры 2×2 допускают простое графическое толкование и решение, следующее из него. Действительно, пусть игра задана матрицей (2.1).

На оси абсцисс отложим отрезок 0D, равный 1, и условимся считать, что левый конец отрезка $x_1 = 1$ — стратегии A_2 , тогда промежуточная точка N с координатой x соответствует некоторой смешанной стратегии первого игрока, причём, $x_1 = 1 - x$, $x_2 = x$, так как при x = 0 имеем $x_1 = 1$ и $x_2 = 0$, и при x = 1 имеем $x_1 = 0$ и $x_2 = 1$.

Вводя ось 0у, можно построить прямую, отвечающую стратегии второго игрока, её уравнение $y = a_{11}(1-x) + a_{21}x$ (при каждом x, y даёт значение выигрыша игрока A, когда B применяет стратегию B_1). Отметим, что для построения B_1 достаточно провести из концов отрезка 0D прямые, не перпендикулярные ему, на левой прямой отложить a_{11} , на правой $-a_{21}$ и, соединив их получим прямую B_1B_1 , отвечающую стратегии B_1 рис. 2.1. Затем аналогично строим стратегию B_2 (её уравнение $y = a_{12}(1-x) + a_{22}x$). Заметим , что при каждом х точки на прямых B_1B_1 и B_2B_2 отвечают выигрышем первого игрока при применении вторым игроком стратегий B_2 и B_1 соответственно. Откуда следует, что ломаная B_2KB_1 рис. 2.2 отвечает нижней границе выигрыша игрока A, а значит в точке её максимума, то есть цена игры V = KN и точка N отвечает оптимальной стратегии игрока A: $X^* = \{x_1; x_2\}$ ($x_1 = 1 - x, x_2 = x$).

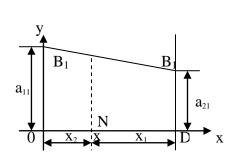
Для нахождения оптимальной стратегии игрока B, исходя из графика, можно воспользоваться формулами:

$$y_1 = \frac{LB_2}{LB_2 + LB_1}; (2.10)$$

$$y_2 = \frac{LB_1}{LB_2 + LB_1} \,. \tag{2.11}$$

В справедливости формул (2.10) и (2.11) легко убедиться, подставив значения LB₂ и LB₁, $LB_2 = V - a_{22}$, $LB_1 = a_{21} - V$ и значение $V = \frac{a_{11}a_{22} - a_{12}a_{21}}{a_{11} + a_{22} - a_{12} - a_{21}}$, тогда получим формулы, совпадающие с (2.10) и (2.11).

Аналогично, меняя ролями х и у, можно построить решение для игрока А.



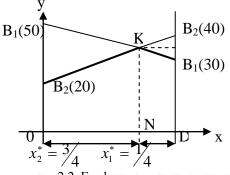


рис. 2.1. Графическое толкование игры 2×2

рис. 2.2. Графическое толкование игры 2×2

Решение игры $2 \times n$.

Пусть игра задана матрицей

$$H = \begin{pmatrix} 4 & 8 & 12 & 6 \\ 9 & 6 & 5 & 10 \end{pmatrix}.$$

Строим прямые, соответствующие стратегиям игрока В рис. 2.3.

Ломаная $B_1 \textit{KMB}_3$ соответствует нижней границе выигрыша, точка K на ней даёт решение игры: $V = \textit{KN} = \frac{48}{7}$, $x_1 = \textit{ND} = \frac{3}{7}$, $x_2 = 0 N = \frac{4}{7}$.

В данном случае оптимальная стратегия противника получается применением смеси двух полезных стратегий B_1 и B_2 , пересекающихся в точке К. Стратегия B_4 является заведомо выгодной при оптимальных стратегиях.

$$y_1 = \frac{LB_2}{LB_1 + LB_2} = \frac{2}{7}, \ y_2 = \frac{LB_1}{LB_1 + LB_2} = \frac{5}{7}.$$

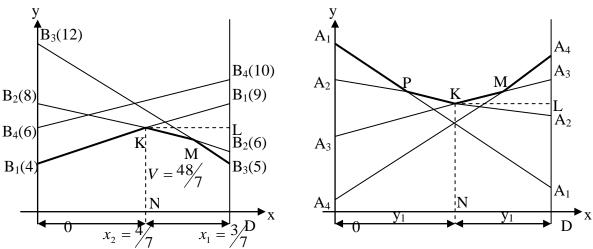


рис. 2.3. Иллюстрация решения игры $2 \times n$

рис. 2.4. Иллюстрация

решения игры $m \times 2$

Решение игры $m \times 2$.

Аналогично может быть решена игра с матрицей $m \times 2$, только в этом случае строим верхнюю границу выигрыша и на ней определяем минимум.

Пусть игра задана матрицей

$$H = \begin{pmatrix} 12 & 2 \\ 10 & 7 \\ 7 & 9 \\ 1 & 11 \end{pmatrix}.$$

Решение задачи находим для игрока В рис. 2.4.

Ломаная $A_1 PKMA_4$ изображает верхнюю границу выигрыша игрока A, на ней ищется точка K с минимальной ординатой, которая и есть цена игры $V = KN = \frac{41}{5}, \ y_1 = ND = \frac{2}{5}, \ y_2 = N0 = \frac{3}{5}.$

Оптимальными стратегиями для игрока А являются вторая и третья. При этом

$$x_2 = \frac{LA_3}{LA_2 + LA_3} = \frac{2}{5}, \ x_3 = \frac{LA_2}{LA_2 + LA_3} = \frac{3}{5}.$$

Матрица оптимальных стратегий имеет вид $\begin{pmatrix} 10 & 7 \\ 7 & 9 \end{pmatrix}$. Тогда решение можно найти по формулам (2.4), (2.5), (2.6), (2.8) и (2.9).

Следовательно, решение игры таково:

$$X^* = \left\{0; \frac{2}{5}; \frac{3}{5}; 0\right\}, Y^* = \left\{\frac{2}{5}; \frac{3}{5}\right\}, V = \frac{41}{5}.$$