Практическое занятие № 4 Химическое сродство

Согласно принципу Бертло (1879) самопроизвольно могут протекать только те химические реакции, которые сопровождаются выделением теплоты ($\Delta H < 0$). Причем чем больше в результате реакции выделяется теплоты, тем большим сродством обладают реагирующие вещества и тем продукты реакции. Оказалось, ЧТО ЭТО не совсем Самопроизвольно ΜΟΓΥΤ протекать, реакции, сопровождающиеся И Кроме того, обратимость поглощением теплоты. реакции противоречит принципу Бертло. Реакция, идущая при данной температуре с в обратном выделением теплоты, при другой температуре идет направлении, T. e. c поглощением теплоты. Здесь проявляется диалектический закон единства и борьбы противоположностей. С одной стороны, система стремится к упорядочению (агрегации) уменьшению H, с другой стороны, система стремится к беспорядку (дезагрегации). Первая тенденция растет с понижением температуры, а вторая растет с повышением температуры. Тенденцию к беспорядку характеризует величина, которую называют энтропией.

Энтропия отражает движение частиц вещества и является мерой неупорядоченности системы. Она возрастает с увеличением движения частиц: при нагревании, испарении, плавлении, расширении газа, при ослаблении или разрыве связей между атомами и т. п. Процессы, связанные с упорядоченностью системы: конденсация, кристаллизация, сжатие, упрочнение связей, полимеризация и т. п. — ведут к уменьшению энтропии. Энтропия является функцией состояния, т. е. ее изменение (ΔS) зависит только от начального (S_1) и конечного (S_2) состояния и не зависит от пути процесса,

$$extit{$\Delta S = S_2 - S_I$.} \quad ext{Если } S_2 > S_I$, то $extitt{$\Delta S > 0$.}$ $extit{$\Delta S < 0$}$$$

Так как энтропия растет с повышением температуры, то можно считать, что мера беспорядка $\approx 7\Delta S$. Энтропия выражается в Дж/моль·град. Таким образом, движущая сила процесса складывается из двух сил: стремление к упорядочению (H) и стремление к беспорядку (TS). При p = const общую движущую силу процесса, которую обозначают ΔG , можно найти из соотношения

$$\Delta G = (H_2 - H_1) - (TS_2 - TS_1) = \Delta H - T\Delta S;$$

$$\Delta G = \Delta H - T\Delta S.$$

Вещество	Состояние	ΔG_{298}^0 ,	Вещество	Состояние	ΔG_{298}^0 ,
		кДж/моль			кДж/моль
BaCO ₃	К	—1138,8	FeO	К	244,3
$CaCO_3$	К	—1128,75	H_2O	Ж	—237,19
Fe_3CO_4	К	—1014,2	H_2O	Γ	228,59
$BeCO_3$	К	—944,75	CO	Γ	—137,27
CaO	К	604,2	CH_4	Γ	50,79
BeO	К	— 581,61	NO_2	Γ	+51,84
BaO	К	528,4	NO	Γ	+86,69
CO_2	Γ	394,38	C_2H_2	Γ	+209,20

Таблица 3

Стандартные абсолютные энтропии некоторых веществ

Вещество	Состояние	S_{298}^{0} ,	Вещество	Состояние	S_{298}^{0} ,
		Дж/моль∙град			Дж/моль-град
C	Алмаз	2,44	NH_3	Γ	192,50
C	Графит	5,69	CO	Γ	197,91
S	Ромб.	31,9	C_2H_2	Γ	200,82
FeO	К	54,0	O_2	Γ	205,03
H_2O	Ж	69,94	H_2S	Γ	205,64
NH_4C1	К	94,5	NO	Γ	210,20
CH ₃ OH	Ж	126,8	CO_2	Γ	213,65
		1			[

H_2	Γ	130,59	C_2H_4	Γ	219,45
Fe_3O_4	К	146,4	Cl_2	Γ	222,95
CH_4	Γ	186,19	NO_2	Γ	240,46
HC1	Γ	186,68	PCl ₃	Γ	311,66
H_2O	Γ	188,72	PCl ₅	Γ	352,71
N_2	Γ	191,49			

Величина G называется изобарно-изотермическим потенциалом или энергией Гиббса. Итак, мерой химического сродства является убыль G потенциала или ΔG .

 ΔG зависит от природы вещества, его количества и от температуры. Энергия Гиббса является функцией состояния, поэтому

$$\Delta G_{{\scriptscriptstyle x.p.}} = \sum \Delta G_{o\delta p}^{npo\delta} - \sum \Delta G_{o\delta p}^{ucx} \; . \label{eq:delta-G}$$

Самопроизвольно протекающие процессы идут в сторону уменьшения любого потенциала и, в частности, в сторон уменьшения ΔG .

Если $\Delta G < 0$, процесс принципиально осуществим, если $\Delta G > 0$ – процесс самопроизвольно проходить не может Чем меньше ΔG , тем сильнее стремление к протеканию данного процесса и тем дальше он от состояния равновесия; при котором $\Delta G = 0$ и $\Delta G = T\Delta S$.

Из соотношения $\Delta G = \Delta H - T\Delta S$ видно, что самопроизвольно могут протекать и процессы, для которых $\Delta H > O$ (эндотермические). Это возможно, когда $\Delta S > 0$, но $|T\Delta S| > |\Delta H|$ и тогда $\Delta G < 0$. С другой стороны, экзотермические реакции ($\Delta H < 0$) самопроизвольно не протекают, если при $\Delta S < 0$ окажется, что $\Delta G > 0$.

В табл. 2 и 3 даны стандартные изобарные потенциалы образования ΔG_{298}^0 и стандартные абсолютные энтропии S_{298}^0 некоторых веществ, значениями которых следует пользоваться при решении задач.

Пример 1. Что имеет большую энтропию: 1 моль кристаллического вещества или 1 моль его паров при той же температуре?

Решение. Энтропия есть мера неупорядоченного состояния вещества. В кристалле частицы (атомы, ионы) имеют упорядоченное могут находиться В расположение И ЛИШЬ некоторых пространства, а для газа таких ограничений нет. 1 моль газа имеет гораздо больший объем, чем 1 моль кристалла, и возможность хаотичного движения молекул газа больше. А так как энтропию можно рассматривать как количественную меру хаотичности атомно-молекулярной структуры вещества, то энтропия моля паров вещества больше энтропии моля его кристаллов при одинаковой температуре.

Пример 2. Прямая или обратная реакция будет протекать при стандартных условиях в системе

$$CH_4(\Gamma) + CO_2(\Gamma) \leftrightarrow 2CO(\Gamma) + 2H_2(\Gamma)$$
?

Решение. Для ответа на поставленный вопрос следует вычислить ΔG_{298}^0 прямой реакции. Значения ΔG_{298}^0 соответствующих веществ даны в табл. 2. Зная, что ΔG есть функция состояния и что ΔG для простых веществ, находящихся в агрегатных состояниях, устойчивых при стандартных условиях, равны нулю, находим ΔG_{298}^0 процесса:

$$\Delta G_{298}^0 = 2(-137,27) + 2(0) - (-50,79 - 394,38) =$$

= + 170,63 кДж.

То, что $\Delta G_{298}^0 > 0$, указывает на невозможность самопроизвольного протекания прямой реакции при T = 298 К и равенстве давлений взятых газов 1 атм.

Пример 3. На основании стандартных теплот образования (табл. 1) и абсолютных стандартных энтропии веществ (табл. 3) вычислите ΔG_{298}^0 реакции, протекающей по уравнению

$$CO(\Gamma) + H_2O(\kappa) = CO_2 < \Gamma) + H_2(\Gamma)$$

Решение. $\Delta G^0 = \Delta H^0 - T \Delta S^0$; ΔH и ΔS - функции состояния, поэтому $\Delta H^0_{x,p} = \sum \Delta H^0_{npoo} - \sum \Delta H^0_{ucx} - 2$ S $\Delta S^0_{x,p} = \sum \Delta S^0_{npoo} - \sum \Delta S^0_{ucx}$ $\Delta H^0_{x,p} = (-393,51+0) - (-110,52-285,84) = = +2,85 \text{ кДж};$ $\Delta S^0_{x,p} = (213,65+130,59) - (197,91+69,94) = = +76,39 = 0,07639 \text{ кДж/моль-град};$ $\Delta G^0 = +2,85-298 (0,07639) = -19,91 \text{ кДж}.$

Пример 4. Восстановление Fe_2O_3 водородом протекает по уравнению $Fe_2O_3(\kappa) + 3H_2(\Gamma) = 2Fe(\kappa) + 3H_2O(\Gamma)$; $\Delta H = +96,61 \text{ кДж}$.

Возможна ли эта реакция при стандартных условиях, если изменение энтропии $\Delta S = 0.1387 \text{ кДж/моль град?}$ При какой температуре начнется восстановление Fe_2O_3 ?

Pешение. Вычисляем ΔG^0 реакции:

$$\Delta G = \Delta H - T \Delta S = 96,61 - 298 - 0,1387 = +55,28 \text{ кДж}.$$

Так как $\Delta G > 0$, то реакция при стандартных условиях невозможна; наоборот, при этих условиях идет обратная реакция окисления железа (коррозия).

Найдем температуру, при которой $\Delta G = 0$:

$$\Delta H = T \Delta S;$$
 $T = \frac{\Delta H}{\Delta S} = \frac{96,61}{0.1387} = 696,5K$

Следовательно, при температуре 696,5 К начнется реакция восстановления Fe_2O_3 . Иногда эту температуру называют температурой начала реакции.

- 101. Теплоты образования ΔH_{298}^0 оксида и диоксида азота соответственно равны +90,37 кДж и +33,85 кДж. Определите ΔS_{298}^0 и ΔG_{298}^0 для реакций получения NO и NO₂ из простых веществ. Можно ли получить эти оксиды при стандартных условиях? Какой из оксидов образуется при высокой температуре? Почему? *Ответ*: +11,94 Дж/моль·град; -60,315 Дж/моль·град; + 86,81 кДж; + 51,82 кДж.
 - 102. При какой температуре наступит равновесие системы:

4HCl (г) +O₂ (г)
$$\leftrightarrow$$
 2H₂0 (г) + 2Cl₂ (г);
 $\Delta H = -114,42 \text{ кДж}.$

Что является более сильным окислителем: хлор или кислород в этой системе и при каких температурах? *Ответ*: 891 К.

- 103. Восстановление Fe_3O_4 оксидом углерода идет по уравнению $Fe_3O_4(\kappa) + CO(\Gamma) = 3FeO(\kappa) + CO_2(\Gamma)$. Вычислите ΔG_{298}^0 и сделайте вывод о возможности самопроизвольного протекания этой реакции при стандартных условиях. Чему равно ΔS_{298}^0 в этом процессе? *Ответ*: +24,19 кДж; +31,34 Дж/моль·град.
 - 104. Реакция горения ацетилена протекает по уравнению

$$C_2H_2(\Gamma) + {}^5/_2O_2(\Gamma) = 2CO_2(\Gamma) + H_2O(ж)$$

Вычислите ΔG_{298}^0 и ΔS_{298}^0 и объясните уменьшение энтропии в результате этой реакции. *Ответ:* -1235,15 кДж; -216,15 Дж/моль·град.

105. Уменьшается или увеличивается энтропия при переходах: а) воды в пар; б) графита в алмаз? Почему? Вычислите ΔS_{298}^0 для каждого

превращения. Сделайте вывод о количественном изменении энтропии при фазовых и аллотропических превращениях. *Ответ*: а) 118,78 Дж/моль·град; б) –3,25 Дж/моль град.

- 106. Чем можно объяснить, что при стандартных условиях невозможна экзотермическая реакция, протекающая по уравнению $H_2(\Gamma)$ + $CO_2(\Gamma) = CO(\Gamma) + H_2O(\pi)$; $\Delta H = -2.85$ кДж. Зная тепловой эффект реакции и абсолютные стандартные энтропии соответствующих веществ, определите ΔG_{298}^0 этой реакции. *Ответ*: + 19.91 кДж.
- 107. Прямая или обратная реакция будет протекать при стандартных условиях в системе 2NO (г) + $O_2(\Gamma) \leftrightarrow 2NO_2(\Gamma)$? Ответ мотивируйте, вычислив ΔG_{298}^0 прямой реакции. *Ответ:* -69,70 кДж.
- 108. Исходя из значений стандартных теплот образования и абсолютных стандартных энтропии соответствующих веществ вычислите ΔG_{298}^{0} реакции, протекающей по уравнению

$$NH_3(\Gamma) + HC1(\Gamma) = NH_4C1(\kappa)$$

Может ли эта реакция при стандартных условиях идти самопроизвольно? *Ответ:* –92,08 кДж.

109. При какой температуре наступит равновесие системы

CO (г) + 2H₂ (г)
$$\leftrightarrow$$
 CH₃OH (ж); $\Delta H = -128,05$ кДж.

Ответ: 385,5 К.

110. Эндотермическая реакция взаимодействия метана с диоксидом углерода протекает по уравнению

$$CH_4(\Gamma) + CO_2(\Gamma) = 2CO(\Gamma) + 2H_2(\Gamma);$$

 $\Delta H = + 247,37 \text{ кДж}.$

При какой температуре начнется - эта реакция? Ответ: 961,9 К.

111. Определите ΔG_{298}^0 реакции, протекающей по уравнению.

$$4NH_3(\Gamma) + 5O_2(\Gamma) = 4NO(\Gamma) + 6H_2O(\Gamma)$$

Вычисления сделайте на основании стандартных теплот образования и абсолютных стандартных энтропии соответствующих веществ. Возможна ли эта реакция при стандартных условиях? *Ответ.* –959,81 кДж.

112. На основании стандартных теплот образования и абсолютных стандартных энтропии соответствующих веществ вычислите ΔG_{298}^0 реакции, протекающей по уравнению

$$CO_2(\Gamma) + 4H_2(\Gamma) = CH_4(\Gamma) + 2H_2O(\kappa)$$

Возможна ли эта реакция при стандартных условиях? Ответ: –130,86 кДж.

- 113. Вычислите изменение энтропии в результате реакции образования аммиака из азота и водорода. При расчете можно исходить из S_{298}^0 соответствующих газов, так как ΔS с изменением температуры изменяется незначительно. Чем можно объяснить отрицательные значения ΔS ? Ответ: -198,26 Дж/моль·град.
- 114. Какие из карбонатов: $BeCO_3$, $CaCO_3$ или $BaCO_3$ можно получить по реакции взаимодействия соответствующих оксидов с CO_2 ? Какая реакция идет наиболее энергично? Вывод сделайте, вычислив ΔG_{298}^0 реакций. *Ответ:* +31,24 кДж; -130,17 кДж; -216,02 кДж.
- 115. На основании стандартных теплот образования и абсолютных стандартных энтропии соответствующих веществ вычислите ΔG_{298}^0 реакции, протекающей по уравнению

$$CO(\Gamma) + 3H_2(\Gamma) = CH_4(\Gamma) + H_2O(\Gamma)$$

Возможна ли эта реакция при стандартных условиях? Ответ: -142,16 кДж.

116. Образование сероводорода из простых веществ протекает по уравнению

$$H_{2}\left(\Gamma\right)+S_{\text{ромб}}=H_{2}S\left(\Gamma\right);$$
 $\Delta H=-20,15$ кДж.

Исходя из значений S_{298}^0 соответствующих веществ определите ΔS_{298}^0 и ΔG_{298}^0 для этой реакции. *Ответ:* +43,15 Дж/моль·град; -33,01 кДж.

117. На основании стандартных теплот образования и абсолютных стандартных энтропии соответствующих веществ вычислите ΔG_{298}^0 реакции, протекающей по уравнению

$$C_2H_4(\Gamma) + 3O_2(\Gamma) = 2CO_2(\Gamma) + 2H_2O(\kappa)$$

Возможна ли эта реакция при стандартных условиях? Ответ: -1331,21 кДж.

118. Определите, при какой температуре начнется реакция восстановления Fe₃O₄, протекающая по уравнению

$$Fe_3O_4 (\kappa) + CO (\Gamma) = 3FeO (\kappa) + CO_2 (\kappa);$$

 $\Delta H = +34,55 \text{ кДж}.$

Ответ: 1102,4 К.

119. Вычислите, при какой температуре начнётся диссоциация пентахлорида фосфора, протекающая по уравнению

$$PCl_5(\Gamma) = PCl_3(\Gamma) + Cl_2(\Gamma);$$
 $\Delta H = +92,59$ кДж.

Ответ: 509 К.

120. Вычислите изменение энтропии для реакций, протекающих по уравнениям:

$$2CH_{4}(\Gamma) = C_{2}H_{2}(\Gamma) + 3H_{2}(\Gamma)$$
 $N_{2}(\Gamma) + 3H_{2}(\Gamma) = 2NH_{3}(\Gamma)$
 $C_{\text{графит}} + O_{2}(\Gamma) = CO_{2}(\Gamma)$

Почему в этих реакциях $\Delta S_{298}^0 > 0$; <0; $\cong 0$? *Ответ*: 220,21 Дж/моль·град, -198,26 Дж/моль·град, 2,93 Дж/моль·град.