Практическое занятие № 5

Химическая кинетика и равновесие

Кинетика - учение о скорости различных процессов, в том числе химических реакций. Критерием принципиальной осуществимости реакции является неравенство $\Delta G_{p,T} < 0$. Но это неравенство не является еще полной гарантией фактического течения процесса в данных условиях, не является достаточным для оценки кинетических возможностей реакции. Так, $\left(\Delta G_{298}^0\right)_{H_2O(\epsilon)} = -228,59$ кДж/моль, а $\left(\Delta G_{298}^0\right)_{AII_3(k)} = -313,8$ кДж/моль и, следовательно, при T=298 К и p=1 атм возможны реакции, идущие по уравнениям:

$$V_2O_2(\Gamma) + H_2(\Gamma) = H_2O(\Gamma)$$

$$2A1 (\kappa) + 3I_2 (\kappa) = 2A1I_3 (\kappa)$$

(1)

(2)

Однако эти реакции при стандартных условиях идут только в присутствии катализатора (платины для первой и воды для второй). Катализатор как бы снимает кинетический «тормоз» и тогда проявляется термодинамическая природа вещества. Скорость химических реакций зависит от многих факторов, основными из которых являются концентрация (давление) реагентов, температура и действие катализатора. Эти же факторы определяют и достижение равновесия в реагирующей системе.

Пример 1. Во сколько раз изменится скорость прямой и обратной реакции в системе $2SO_2(\Gamma) + O_2(\Gamma) \leftrightarrow 2SO_3(\Gamma)$, если объем газовой смеси уменьшить в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: $[SO_2]$ = a, $[O_2] = b$, $[SO_3] = c$.

Согласно закону действия масс скорости (v) прямой и обратной реакций до изменения объема

$$v_{np} = K a^2 b$$
$$v_{o\delta p} = K_1 c^2$$

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: $[SO_2] = 3a$, $[O_2] = 36$, $[SO_3] = 3c$. При новых концентрациях скорости (v') прямой и обратной реакций:

$$v'_{np} = K (3a)^{2} (3b)$$

 $v'_{o\delta p} = K_{I} (3c)^{2} = 9K_{I} c^{2}$

Отсюда

$$\frac{v'_{np}}{v_{np}} = \frac{27 \, Ka^2 b}{Ka^2 b} = 27$$

$$\frac{v'_{o\delta p}}{v_{o\delta p}} = \frac{9K_1c^2}{K_1c} = 9$$

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в 9 раз. Равновесие системы сместилось в сторону образования серного ангидрида.

Пример 2. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 °C, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

$$v_{t_2} = v_{t_1} \gamma^{\frac{t_2 - t_1}{10}}$$

$$v_{t_2} = v_{t_1} \cdot 2^{\frac{70 - 30}{10}} = v_{t_1} \cdot 2^4 = 16v_{t_1}$$

Следовательно, скорость реакции (v_{t_2}), протекающей при температуре 70 °C, увеличилась по сравнению со скоростью реакции (v_{t_1}), протекающей при температуре 30 °C, в 16 раз.

Пример 3. Константа равновесия гомогенной системы

$$CO(\Gamma) + H_2O(\Gamma) \leftrightarrow CO_2(\Gamma) + H_2(\Gamma)$$

при 850 °C равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: $[CO]_{ucx} = 3$ моль/л, $[H_2O]_{ucx} = 2$ моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей есть тоже величина постоянная и называется константой, равновесия данной системы:

$$v_{np} = K_1 \text{ [CO] [H}_2\text{O]};$$

 $v_{oon} = \text{[CO}_2\text{] [H}_2\text{]}$

$$K_{pab} = \frac{K_1}{K_2} = \frac{[CO_2][H_2]}{[CO][H_2O]}$$

В условии задачи даны исходные концентрации, тогда как в выражение $K_{\text{равн}}$ входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрации $[CO_2]_{\text{равн}} = x$ моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также x моль/л. По столько же молей (x моль/л) CO и H_2O расходуется для образования по x молей CO_2 и H_2 . Следовательно, равновесные концентрации всех четырех веществ будут:

$$[CO_2]_{pавн} = [H_2]_{pавн} = x$$
 моль/л,
 $[CO]_{pавн} = (3 - x)$ моль/л,
 $[H_2O]_{pавн} = (2 - x)$ моль/л.

Зная константу равновесия, находим значение x, а затем и исходные концентрации всех веществ:*-

$$1 = \frac{x^2}{(3-x)(2-x)},$$

$$x^2 = 6 - 2x - 3x + x^2; \quad 5x = 6, \quad x = 1,2 \text{ моль/л}.$$

Таким образом, искомые равновесные концентрации:

$$[CO_2]_{\text{равн}} = 1,2$$
 моль/л;
$$[H_2]_{\text{равн}} = 1,2$$
 моль/л;
$$[CO]_{\text{равн}} = 3 - 1,2 = 1,8$$
 моль/л;
$$[H_2O]_{\text{равн}} = 2 - 1,2 = 0,8$$
 моль/л.

Пример 4. Эндотермическая реакция разложения пентахлорида фосфора протекает по уравнению

$$PCl_5(\Gamma) \leftrightarrow PCl_3(\Gamma) + Cl_2(\Gamma); \quad \Delta H = + 129,7 \text{ кДж.}$$

Как надо изменить: а) температуру, б) давление; в) концентрацию, чтобы сместить равновесие в сторону прямой реакции - разложения PCl₅?

Решение. Смещением или сдвигом химического равновесия называют изменение равновесных концентраций реагирующих веществ в результате изменения одного из условий реакции. Направление, в котором сместилось равновесие, определяется по принципу Ле-Шателье: а) так как реакция разложения PCl_5 эндотермическая ($\Delta H > 0$), то для смещения равновесия, в сторону прямой реакции нужно повысить температуру; б) так как в данной системе разложение PCl_5 ведет к

увеличению объема (из одной молекулы газа образуются две газообразные молекулы), то для смещения равновесия в сторону прямой реакции надо уменьшить давление; в) смещение равновесия в указанном направлении можно достигнуть как увеличением концентрации PCl_5 , так и уменьшением концентрации PCl_3 или Cl_2 .

- 121. Окисление серы и ее диоксида протекают по уравнениям: а) $S(\kappa) + O_2(\Gamma) = SO_2(\Gamma)$; б) $2SO_2(\Gamma) + O_2(\Gamma) = 2SO_3(\Gamma)$. Как изменятся скорости этих реакций, если объемы каждой из систем уменьшить в четыре раза? *Ответ*: увеличатся: а) в 4 раза, б) в 64 раза.
- 122. Напишите выражение для константы равновесия гомогенной системы $N_2 + 3H_2 \leftrightarrow 2NH_3$. Как изменится скорость прямой реакции образования аммиака, если увеличить концентрацию водорода в 3 раза? *Ответ*: увеличится в 27 раз.
- 123. Реакция идет по уравнению $N_2 + O_2 = 2NO$. Концентрации исходных веществ до начала реакции были: $[N_2] = 0,049$ моль/л; $[O_2] = 0,01$ моль/л. Вычислите концентрацию этих веществ в момент, когда [NO] стала равной 0,005 моль/л. *Ответ*: $[N_2] = 0,0465$ моль/л; $[O_2] = 0,0075$ моль/л.
- 124. Реакция идет по уравнению $N_2 + 3H_2 = 2NH_3$. Концентрации участвующих в ней веществ были: $[N_2] = 0,80$ моль/л; $[H_2] = 1,5$ моль/л; $[NH_3] = 0,10$ моль/л. Вычислите концентрацию водорода и аммиака, когда $[H_2]$ стала равной 0,50 моль/л. *Ответ*: $[NH_31 = 0,70$ моль/л; $[H_2] = 0,60$ моль/л.
- 125. Реакция идет по уравнению $H_2 + I_2 = 2HI$. Константа скорости этой реакции при 508° C равна 0,16. Исходные концентрации реагирующих веществ были: $[H_2] = 0,04$ моль/л; $[I_2] = 0,05$ моль/л. Вычислите начальную скорость реакции и скорость ее, когда $[H_2]$ стала равной 0,03 моль/л. *Ответ*: $3,2\cdot10^{-4}$; $1,92\cdot10^{-4}$.
- 126. Вычислите, во сколько раз уменьшится скорость реакции, протекающей в газовой фазе, если понизить температуру от 120 до 80°С. Температурный коэффициент скорости реакции равен трем. *Ответ*: в 81 раз.
- 127. Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 60 град, если температурный

коэффициент скорости данной реакции равен двум? *Ответ*: увеличится в 64 раза.

- 128. Как изменится скорость реакции, протекающей в газовой фазе, при понижении температуры на 30 град, если температурный коэффициент скорости данной реакции равен трем? *Ответ*: уменьшится в 27 раз.
- 129. Напишите выражение для константы равновесия гомогенной системы $2SO_2 + O_2 \leftrightarrow 2SO_3$. Как изменится скорость прямой реакции образования серного ангрида, если увеличить концентрацию SO_2 в 3 раза? *Ответ*: увеличится в 9 раз.
- 130. Напишите выражение для константы равновесия гомогенной системы $CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$.

Как следует изменить температуру и давление, чтобы повысить выход водорода? Прямая реакция – образования: водорода эндотермическая.

- 131. Реакция идет по уравнению 2NO + O_2 = 2NO₂ (Концентрации исходных веществ были: [NO] = 0,03 моль/л, [O_2] = 0,05 моль/л. Как изменится скорость реакции, если увеличить концентрацию кислорода до 0,10 моль/л и концентрацию NO до 0,06 моль/л. *Ответ*: увеличится в 8 раз.
- 132. Напишите выражение для константы равновесия гетерогенной системы: $CO_2 + C \leftrightarrow 2CO$. Как изменится скорость прямой реакции образования CO, если концентрацию CO_2 уменьшить в четыре раза? Как следует изменить давление, чтобы повысить выход CO?
- 133. Напишите выражение для константы равновесия гетерогенной системы $C + H_2O$ (г) $\leftrightarrow CO + H_2$. Как следует изменить концентрацию и давление, чтобы сместить равновесие в сторону обратной реакции образования водяных паров?

134. Равновесие гомогенной системы

$$4HCl(\Gamma) + O_2(\Gamma) \leftrightarrow 2H_2O(\Gamma) + 2Cl_2(\Gamma)$$

установилось при следующих концентрациях реагирующих веществ: $[H_2O] = 0.14$ моль/л; $[Cl_2] = 0.14$ моль/л; [HCl] = 0.20 моль/л; $[O_2] = 0.32$ моль/л. Вычислите исходные концентрации хлористого водорода и кислорода. *Ответ*: $[HCl]_{\text{исх}} = 0.48$ моль/л; $[O_2]_{\text{исх}} = 0.39$ моль/л.

135. Вычислите константу равновесия для гомогенной системы $CO(\Gamma)$ + $H_2O(\Gamma) \leftrightarrow CO_2(\Gamma)$ + $H_2(\Gamma)$, если равновесные концентрации реагирующих

веществ [CO] = 0.01моль/л; [H₂O] = 0.064 моль/л; [CO₂] = 0.016 моль/л; [H₂] = 0.016 моль/л. *Ответ*; K = 1.

136. Константа равновесия гомогенной системы

$$CO(\Gamma) + H_2O(\Gamma) \leftrightarrow CO_2(\Gamma) + H_2(\Gamma)$$

при некоторой температуре равна 1. Вычислите равновесные концентрации всех реагирующих веществ, если исходные концентрации [CO] = 0,10 моль/л; [H₂O] = 0,40 моль/л. *Ответ*: [CO₂] = [H₂] = 0,08 моль/л; [CO] - = 0,02 моль/л; [H₂O] = 0,32 моль/л.

137. Константа равновесия гомогенной системы

$$N_2 + 3H_2 \leftrightarrow 2NH_3$$

при температуре. 400 °C равна 0,1. Равновесные концентрации водорода и аммиака соответственно равны 0,2 моль/л и 0,08 моль/л. Вычислите равновесную и начальную концентрации азота. *Ответ:* 0,8 моль/л; 0,84 моль/л.

138. При некоторой температуре равновесие гомогенной системы 2NO + $O_2 \leftrightarrow 2NO_2$ установилось при следующих концентрациях реагирующих веществ: [NO] = 0,2 моль/л;[O₂] = 0,1 моль/л; [NO₂] = 0,1 моль/л. Вычислите константу равновесия и исходную концентрацию NO и O_2 . *Ответ:* K = 2,5; [NO] = 0,3 моль/л; $O_2 = 0,15$ моль/л.

139. Почему при изменении давления смещается равновесие системы N_2 + $3H_2 \leftrightarrow 2NH_3$ и не смещается равновесие системы $N_2 + O_2 \leftrightarrow 2NO$? Напишите выражения для констант равновесия каждой из данных систем.

140. Исходные концентрации NO и $C1_2$ в гомогенной системе 2NO + $C1_2 \leftrightarrow 2$ NOCl составляют соответственно 0,5 и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировало 20% NO. *Ответ*: 0,416.