Лекция № 14

Комплексные соединения

1. Строение комплексных соединений

Комплексные соединения — это обширный класс неорганических и элементорганических соединений. Они широко встречаются в природе. Многие из них выполняют важные функции в биологических системах, например хлорофилл, витамин B_{12} , гемоглобин, металлоферменты и т.д. Комплексные соединения применяются как лекарственные средства.

Комплексные соединения – это соединения, получаемые сочетанием более простых веществ. Впервые строение и свойства комплексных соединений описал швейцарский химик Альфред Вернер. В 1893 году он предложил координационную теорию строения комплексных соединений. Согласно этой теории, центральное место в комплексном соединении называемый занимает катион металла, центральным ионом ИЛИ комплексообразователем. С ним связаны или координированы нейтральные молекулы или ионы, которые называются лигандами. Комплексообразователь и лиганды образуют внутреннюю координационную сферу, которую при записи формулы заключают в квадратные скобки. Остальные положительные или отрицательные ионы, не разместившиеся во внутренней сфере, составляют внешнюю координационную сферу. Например, строение $K_3[Fe(CN)_6]$ можно представить следующим образом:

Комплексообразователями могут быть нейтральные атомы, катионы и анионы, имеющие вакантные орбитали. Наибольшей способностью к комплексообразованию обладают катионы переходных элементов: Fe, Ni, Co, Cr, Cu, Zn, Ag, Pt и т. д.

- Природа лигандов.

В качестве лигандов могут быть молекулы: H_2O , NH_3 , CO, NO; анионы: Cl^- , Br^- , I^- , OH^- , CN^- , SCN^- и др. Лиганды, как правило, имеют одну или несколько неподелённых пар электронов.

- Заряд комплексообразователя (центрального иона) легко определяется исходя из заряда комплексного иона и заряда лигандов. Заряд комплексного иона устанавливается по заряду ионов внешней сферы. Например, определим заряд комплексообразователей (обозначим x) – ионов железа, платины, серебра, цинка в следующих соединениях:

$$\begin{split} &K_4[Fe(CN)_6]^{-4} & [x+(-1)\cdot 6]=-4, \, x=+2. \\ &[Pt(NH_3)_2Cl_2]^0 & [x+(0\cdot 2)+(-1\cdot 2)]=0, \, x=+2. \\ &[Ag(NH_3)_2]^+Cl & [x+(0\cdot 2]=+1, \, x=+1. \\ &K_2[\ Zn(OH)_4]^{2-} & [x+(-1)\cdot 4]=-2, \, x=+2. \end{split}$$

В зависимости от заряда внутренней сферы различают: катионные, анионные и молекулярные комплексы. Например, тетрагидроксоцинкат калия — анионный комплекс, хлорид диамминсеребра — катионный комплекс, дихлородиамминплатина — молекулярный комплекс.

Важной характеристикой комплексных соединений является координационное число. Оно показывает число лигандов, которые располагаются вокруг центрального иона. Координационное число зависит от заряда центрального атома. Заряд центрального атома +1 +2 +3 +4. Координационное число 2 4 6 8. Координационное число 2 характерно для комплексных соединений катионов Ag^+ , Cu^+ . Например, $[Cu(NH_3)_2]Cl$

Координационное число 4 встречается в комплексных соединениях катионов Cu^{2+} , Zn^{2+} , Hg^{2+} , Pt^{2+} . Например, $K_2[Zn(OH)_4]$

Координационное число 6 характерно для катионов Fe^{3+} , Cr^{3+} , Co^{3+} . Например, $K_3[Fe(CN)_6]$.

Координационное число не является неизменной величиной. Приведенные выше координационные числа характерны для координационно-насыщенных соединений. Встречаются также координационноненасыщенные соединения, в которых координационное число может быть меньше максимального.

Номенклатура комплексных соединений

В названиях комплексных соединений используют общепринятое правило: сначала называют анион, затем катион. При составлении названия комплексного катиона соблюдают следующий порядок: указывают число отрицательно заряженных лигандов, используя греческие числительные: ди, три, тетра и т.д.; затем называют отрицательно заряженные лиганды с окончанием «о» (Cl⁻ – хлоро, J⁻ – йодо, SO4²⁻ – сульфато, OH⁻ – гидроксо, CN⁻ - циано и т.д.); называют число и название нейтральных лигандов: вода – аква, аммиак – аммин; последним называют комплексообразователь с указанием его степени окисления. Например: [Cu(NH₃)₄]SO₄ – сульфат тетраамминмеди (ll); [Co(NH₃)₅Br]SO₄ – сульфат бромопентаамминкобальта (lll).

Название комплексного аниона составляется аналогично названию катиона и заканчивается суффиксом «ат». $K_3[Fe(CN)_6]$ — гексацианоферрат (lll) калия. $K_2[Zn(OH)_4]$ — тетрагидроксоцинкат калия.

Нейтральный комплекс называют так же, как и катионный, но комплексообразователь указывают в именительном падеже, степень окисления не указывают. $[Pt(NH_3)_2Cl_2]$ – дихлороамминплатина.

Классификация комплексных соединений

По принадлежности к кислотам, основаниям и солям различают:

- комплексные кислоты, например $H_2[ZnF_6]$;
- комплексные основания, [Ag(NH₃)₂]OH;

• комплексные соли, $K_3[Fe(CN)_6]$.

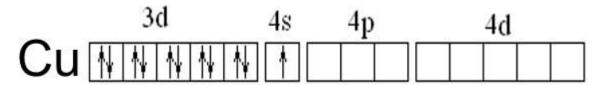
По природе лигандов.

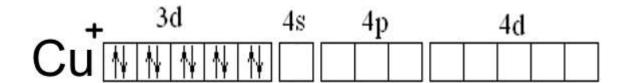
К этой группе относятся

- аквакомплексы, если лигандом являются молекулы воды: $[Al(H_2O)_6]Cl_3$;
- амминокомплексы, если лиганды – молекулы аммиака: [Zn(NH₃)₄]SO₄;
- гидроксокомплексы, если лиганды гидроксильные группы: K₂[Zn(OH)₄];
- ацидокомплексы, содержащие в качестве лигандов анионы кислоты: $K_4[Fe(CN)_6]$;
- карбонилы, в которых лигандами являются молекулы оксида углерода (ll): $[Fe(CO)_5]$.

В зависимости от вида лигандов комплексы бывают однородные и неоднородные:

- в однородных комплексах все лиганды являются частицами одного вида: $[Pt(NH_3)_6]Cl_4;$
- в неоднородных комплексах присутствуют лиганды разного вида: [Pt(NH₃)₄Cl₂]Cl₂. По числу центральных атомов различаютодноядерные и многоядерные комплексы:
- одноядерные комплексы содержат один центральный атом: все рассмотренные выше комплексы одноядерные;
- многоядерные комплексы содержат два или несколько центральных атомов. Существуют различные типы многоядерных комплексов: мостиковые и кластерные. В мостиковых центральные атомы связаны мостиковой группой, например: [Cr(NH₃)₅ OH (NH₃)₅Cr]Cl₅. В кластерных комплексах атомы металлов непосредственно связаны друг с другом, например: димер (CO)₅Mn Mn(CO)₅. В отдельную группу выделяют хелатные комплексы, в которых центральный атом охвачен лигандами по типу клешни. Комплексы такого типа характерны, например, для аминокислот:
- Другим важным классом комплексных соединений являются *макроциклические комплексы*. Они образованы циклическими лигандами, внутри которых размещается центральный атом. К макроциклическим соединениям относятся, например, хлорофилл, гемоглобин, цианокобаламин (витамин B₁₂).

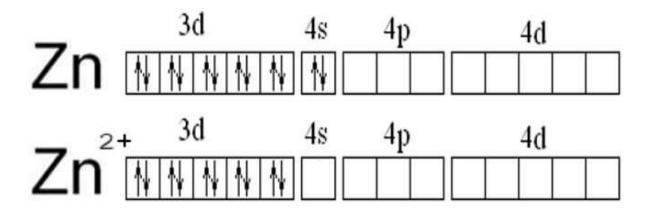

- Основу цианокобаламина составляет коррин макроциклическая система, содержащая четыре пятичленных кольца пиррола, соединенных между собой.
- Внутри циклической системы корринаразмещается комплексообразователь атом кобальта.


Химические связи в комплексных соединениях

- В комплексных соединениях внутренняя и внешняя сферы связаны между собой ионной связью. Центральный ион с лигандами образует ковалентные связи по донорно-акцепторному механизму. Лиганды являются донорами электронов, а центральный ион акцептором электронов, он предоставляет свободные орбитали.
- Орбитали центрального иона, которые участвуют в образовании связей, подвергаются гибридизации. Тип гибридизации зависит от электронного строения лигандов и их числа. Характер гибридизации, в свою очередь, определяет геометрическое строение комплексного иона.
- Рассмотрим образование связей в комплексном ионе диамминмеди (l) $[Cu(NH_3)_2]^+$.

Атом меди находится в 4 периоде, 1 группе, относится к d- элементам. Его электронная формула : $1s^22s^22p^63s^23p^63d^{10}4s^1$.

- При образовании иона, атом меди теряет ѕэлектрон внешнего уровня и превращается в ион: $Cu-1e=Cu^+$. Электронная формула иона Cu^+ принимает вид: $1s^22s^22p^63s_23p^63d^{10}4s^0$.
- Электронно-графическое строение предвнешних и внешних оболочек атома и иона меди можно представить следующим образом:


4s-орбиталь и 4p-орбиталь подвергаются spгибридизации и образуют две гибридные 4spорбитали, одинаковые по форме и энергии. При образовании комплексного иона, катион меди взаимодействует с двумя молекулами аммиака, имеющими неподеленную электронную пару. $Cu^++2NH_3\rightarrow [Cu(NH_3)_2]^+$.

• Неподеленные электронные пары молекул NH₃ занимают две гибридные 4spорбитали и образуют две ковалентные связи, равноценные по длине и энергии.

Если бы в образовании ковалентных связей по донорно-акцепторному механизму принимали участие чистые s- и p- орбитали, которые отличаются по форме и энергии, то образующиеся ковалентные связи были бы неравноценными.

- Это противоречит экспериментальным данным. Для объяснения равноценности связей принята модель sp-гибридизации, согласно которой одна 4s-орбиталь и одна 4p-орбиталь выравниваются по форме и энергии.
- Таким образом, координационному числу 2 соответствует sp-гибридизация атомных орбиталей центрального атома.
- Комплексный ион с координационным числом 2 имеет линейное строение, например: $[NH_3 Cu NH_3]^+$
- Комплексных соединений с координационным числом 2 немного. В основном встречаются комплексные соединения с координационным числом 4 и 6.
- Рассмотрим образование связей в комплексном ионе цинка с KY = 4: $[Zn(NH3)4]^{2+}$
- Электронная формула атома Zn: Zn⁰ 1s22s22p63s23p63d104s2
- Электронная формула иона Zn²⁺: Zn²⁺ 1s22s22p63s23p63d104s0.
- Электронно-графическое строение Zn⁰ и Zn⁺²:

Для иона Zn^{+2} характерна sp^3 -гибридизация, 4s-орбиталь и три 4p-орбитали выравниваются форме образуются ПО И энергии, В результате четыре sp^3 -гибридные орбитали. Эти орбитали занимают неподеленные 4-x молекул NH_3 образовании электронные пары при комплексного иона цинка:

Таким образом, катион цинк связан с 4 молекулами аммиака ковалентными связями, образованными по донорно-акцепторному механизму.

Устойчивость комплексных соединений

- В комплексных соединениях внутренняя и внешняя сферы связаны ионной связью. При растворении в воде комплексный ион диссоциирует как сильный электролит, то есть полностью распадается на комплексный ион и ион внешней сферы.
- Например, хлорид диамминсеребра диссоциирует в соответствии с уравнением: $[AgNH_3)_2]Cl \rightarrow [Ag(NH_3)_2]_+ + Cl.$

Такая диссоциация комплекса называется первичной.

Лиганды связаны с центральным ионом прочнее, поэтому отщепляются в меньшей степени. Диссоциация комплексного иона называется вторичной. Она протекает обратимо и ступенчато. Так, комплексный ион серебра диссоциирует в две ступени: 1 ступень $[Ag(NH_3)_2]^+ \leftrightarrow [Ag(NH_3)]^+ + NH_3$;

- 2 ступень $[Ag(NH_3)]+ \leftrightarrow Ag^+ + NH_3$.
- Каждой ступени диссоциации соответствует своя константа равновесия.

Применение комплексных соединений в медицине и фармации

• Комплексные соединения используются в медицине при лечении ряда заболеваний. Например, комплексные соединения железа и кобальта (ферамид, коамид, витамин В12) применяются при анемиях, аспартат цинка — при цинкдефиците, ауранофин — при ревматоидном артрите, сульфатиазол серебра как противомикробное средство, цисплатин как противоопухолевое средство.