Контрольные вопросы и задачи

- 6.1. Что такое инвертирование?
- 6.1. Что является формальным признаком источника и потребителя электрической энергии?
- 6.3. Объясните растущий характер входной характеристики зависимого инвертора.
- 6.4. От чего зависит мощность, передаваемая инвертором в сеть, и как ее можно регулировать?
- 6.5. Чем определяется время восстановления управляющих свойств тиристоров в зависимых инверторах?
- 6.6. Что такое ограничительная характеристика?
- 6.7. Задача: однофазный мостовой преобразователь без трансформатора работает на сеть 220 В в режиме инвертирования: $E_d=100$ В, суммарное активное сопротивление потерь в цепи постоянного тока $r_{\rm n}=0.25$ Ом, коммутационные потери отсутствуют, угол управления $\beta=60^\circ$. Нарисовать схему, определить: а) мощность P_E , отбираемую от источника постоянного тока; б) действующее значение тока, отдаваемого инвертором в сеть; в) время, предоставляемое на восстановление управляющих свойств тиристоров $t_{\rm восст}$. Нарисовать временные диаграммы питающего напряжения и тока в сети $I_{\rm сети}$ и определить фазовый сдвиг ϕ между током и напряжением.
- 6.8. Задача: зависимый инвертор выполнен по трехфазной мостовой схеме без трансформатора и подключен к сети 220 В. Суммарное активное сопротивление потерь в цепи постоянного тока $r_{\rm n}=0.28$ Ом, $E_d=260$ В, $I_d=10$ А. Определить: а) угол управления β ; б) действующее значение тока, отдаваемого инвертором в сеть $I_{\rm c}$.
- 6.9. Задача: зависимый инвертор выполнен по трехфазной схеме с нулевым выводом и подключен к сети 380 В через трансформатор с $K_{\rm T}=1$. Все обмотки трансформатора соединены в звезду. Активными потерями в схеме пренебречь. Определить угол управления β , если $E_d=400$ В, $x_{\rm a}=1$ Ом, $I_d=100$ А.

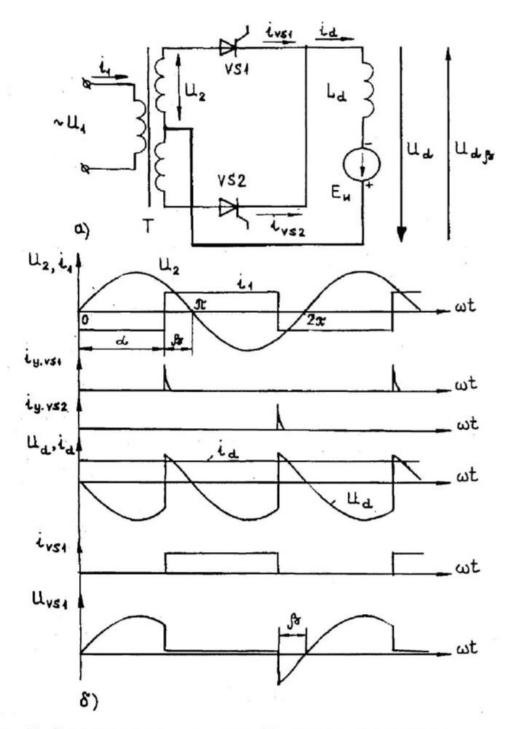


Рис. 2.1. Схема ведомого сетью инвертора (a), диаграммы электрических процессов (б)