Занятие № 14

1.2. Моделирование схемы электроснабжения для расчёта токов короткого замыкания в сети выше 1000 В

Цель работы: овладение методикой математического моделирования и расчета токов КЗ в сетях выше 1000 В.

1.2.1. МЕТОДИЧЕСКИЕ УКАЗАНИЯ

При расчете токов КЗ в сетях выше 1000 В обязателен учет индуктивных сопротивлений элементов сети: электродвигателей, трансформаторов, реакторов, воздушных и кабельных линий, токопроводов. Активное сопротивление учитывается для воздушных ЛЭП с малым сечением проводов и со стальными проводами, а также для кабельных линий большой протяженности с малым сечением жил. Целесообразно учитывать активное сопротивление, если $r_{\Sigma} \ge x_{\Sigma} / 3$, где r_{Σ} , x_{Σ} — суммарные активное и реактивное сопротивления сети от источника питания до места КЗ.

Активное сопротивление трансформаторов также необходимо учитывать в расчетах токов КЗ, если $r_{\rm тp} \ge 0.3 x_{\rm тp}$. Кроме этого, на сопротивление влияет изменение числа витков обмоток устройствами регулирования напряжения. Учесть действительное положение ответвлений каждого трансформатора в распределительных сетях практически невозможно, поскольку их положение изменяется в зависимости от значения нагрузки, схемы и режима работы сети. Поэтому при расчетах принимается, что все трансформаторы включены на основное ответвление, соответствующее их номинальному напряжению.

Все сопротивления схемы замещения подсчитывают в именованных (Ом) или в относительных единицах. При расчете в относительных единицах задаются базовыми величинами: напряжением $U_{\rm f}$ и мощностью $S_{\rm f}$.

Расчетные формулы для моделирования элементов системы электроснабжения приведены в таблице 1.12.

Расчетные формулы для определения сопротивлений

Элемент ЭУ, его	Схема	Расчетные формулы			
схема и исходный параметр	замещения	Именованные единицы, Ом	относительные единицы		
Генератор, $X_d, \%$	537	$x = \frac{X_d\%}{100} \cdot \frac{U_{\text{HOM}}^2}{S_{\text{HOM}}}$	$x = \frac{X_d \%}{100} \cdot \frac{S_{\delta}}{S_{\text{HOM}}}$		
Энергосистема $I_{ m OTKJ.HOM}.$ $S_{ m K3.cuct}$ $x_{ m cuct}$		$x = \frac{U_{\text{ср.ном}}}{\sqrt{3} I_{\text{откл.ном.}}}$ или $x = \frac{U_{\text{ном}}^2}{S_{\text{кз.сист}}}$	$x = \frac{S_6}{\sqrt{3} I_{\text{OTK.HOM.}} U_{\text{ср.ном}}}$ или $x = \frac{S_6}{S_{\text{K3.cuct}}}$		
Двухобмоточный трансформатор u_{κ_3} , %		$x = \frac{u_{\text{K3}}\%}{100} \cdot \frac{U_{\text{cp.hom}}^2}{S_{\text{Hom.tp}}}$	$x = \frac{u_{\text{K3}}\%}{100} \cdot \frac{S_6}{S_{\text{HOM.Tp}}}$		
Реактор $x_{\rm p}$, Ом		$x = x_{\rm p} \frac{U_{\rm HOM}^2}{U_{\rm cp}^2}$	$x = x_{\rm p} \frac{S_{\rm HOM}^2}{U_{\rm cp}^2}$		
Линия r_0, x_0		$ \begin{array}{ccc} x &= x_0 l \\ r &= r_0 l \end{array} $	$x = x_0 l \frac{S_6}{U_{\text{cp.hom}}^2}$ $r = r_0 l \frac{S_6}{U_{\text{cp.hom}}^2}$		

 $S_{\text{ном}}$ – номинальные мощности элементов, MBA;

 S_6 –базовая мощность, МВА;

 $S_{\text{кз.сист}}$ – мощность КЗ энергосистемы, МВА;

 $I_{\text{откл.ном.}}$ – номинальный ток отключения выключателя, кА;

 $u_{\text{кз}}$ – напряжение КЗ трансформатора, %;

 $x_{\rm p}$ — сопротивление реактора, Ом;

 x_0, x_0 – активное и индуктивное сопротивления линии на 1 км длины;

l – длина линии, км;

 X_d –сверхпереходное индуктивное сопротивление генератора;

 $U_{\rm cp}$ — среднее напряжение в месте установки данного элемента, кВ.

1.2.2. ПРИМЕР РАСЧЕТА

Для схемы электроснабжения цеховой подстанции (рис. 1.2) требуется составить схему замещения для расчета токов КЗ; определить сопротивления элементов схемы электроснабжения; наметить и обозначить на расчетной схеме и схеме замещения точки расчета токов КЗ; определить токи КЗ и составить «сводную ведомость токов КЗ».

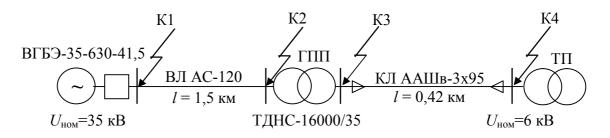


Рис. 1.2. Расчетная схема распределительной сети

Определение сопротивлений

На подстанции энергосистемы установлен выключатель высокого напряжения ВГБЭ-35-630-41,5 с номинальным током отключения КЗ $I_{\text{откл.ном}} = 41,5$ кА.

Принимаем $U_{\text{ср.ном}} = 37 \text{ кB}.$

Определяем мощность КЗ системы;

$$S_{\text{кз.сист}} = \sqrt{3} \cdot U_{\text{ср.ном}} \cdot I_{\text{откл.ном}} = \sqrt{3} \cdot 37 \cdot 41,5 = 2660 \text{ MBA}.$$

Расчет ведем в относительных единицах. Производим расчёт сопротивлений сети, принимая базисную мощность $S_6 = 100 \text{ MBA}$.

1. Сопротивление энергосистемы:

$$x_{\text{CUCT}} = \frac{S_{6}}{S_{\text{K3.CUCT}}} = \frac{100}{2660} = 0.038$$

2. Сопротивление воздушной линии 35 кВ:

$$r_{\text{BJI}} = \frac{r_0 \cdot l \cdot S_{\tilde{0}}}{U_{\text{cp.HOM}}^2} = \frac{0.27 \cdot 1.5 \cdot 100}{37^2} = 0.03$$

$$x_{\text{BJI}} = \frac{x_0 \cdot l \cdot S_{\tilde{0}}}{U_{\text{cp.HOM}}^2} = \frac{0,309 \cdot 1,5 \cdot 100}{37^2} = 0,034$$

где: l = 1,5 км - длина воздушной линии;

 $U_{
m cp. hom}$ - базисное напряжение данной ступени трансформации, кВ;

 r_0 = 0,27 Ом/км - активное сопротивление провода АС-120 (табл.1.6);

 $x_0 = 0.309$ Ом/км - индуктивное сопротивление провода AC-120 (табл.1.12).

3. Сопротивление трансформатора ТДНС-16000/35 кВА:

$$\chi_{\rm TP} = \frac{u_{\rm K3}\%}{100} \cdot \frac{S_{\rm fo}}{S_{\rm HOM,TD}} = \frac{10.5}{100} \cdot \frac{100}{16} = 0.656$$

Активным сопротивлением пренебрегаем, так как трансформатор большой мощности.

где $S_{\text{ном.тр}} = 16$ MBA- номинальная мощность трансформатора; $u_{\text{к3}} = 10,5\%$ — напряжение короткого замыкания трансформатора;

4. Сопротивление кабельной линии:

$$r_{\text{KJI}} = \frac{r_0 \cdot l \cdot S_{\tilde{0}}}{U_{\text{CD.HOM}}^2} = \frac{0,329 \cdot 0,42 \cdot 100}{6,3^2} = 0,348;$$

$$x_{\text{KJI}} = \frac{x_0 \cdot l \cdot S_{\tilde{0}}}{U_{\text{cp.HOM}}^2} = \frac{0,0602 \cdot 0,42 \cdot 100}{6,3^2} = 0,064,$$

где: l=0,42 км — длина кабельной линии; $U_{\rm cp. hom}=6,3$ кВ — базисное напряжение данной ступени трансформации; $r_{\rm o}=0,329$ Ом/км — активное сопротивление кабеля ААШв—(3х95) (табл.1.6); $x_{\rm o}=0,0602$ Ом/км — индуктивное сопротивление кабеля ААШв—(3х95) (табл.1.5)

Составляем схему замещения – рис. 1.3.

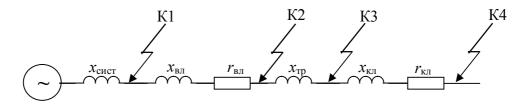


Рис. 1.3. Схема замещения участка распределительной сети

Расчет токов КЗ

В сетях среднего напряжения (6-35 кВ) в России применяют изолированную нейтрвль. Ток однофазного замыкания на землю в таких сетях невелик, его величина определяется емкостью линии (зависит от напряжения, длины и типа линии), и этот режим не является аварийным. Соответственно, рассчитывать токи однофазного КЗ в сетях среднего напряжения нет необходимости.

Ток двухфазного КЗ легко определяется по рассчитанному току трехфазного:

$$I_{\text{K3}}^{(2)} = \frac{\sqrt{3}}{2} I_{\text{K3}}^{(3)} = 0.87 I_{\text{K3}}^{(3)}$$

Ток трехфазного КЗ определяется по формуле:

$$I_{\text{K3}}^{(3)} = \frac{U_{\text{cp.Hom}}}{\sqrt{3} Z_{\text{pe3}}}, \text{ KA}$$

где $Z_{\text{рез}}$ – полное сопротивление до точки К3, Ом.

При расчете в системе относительных единиц сначала находят базисный ток КЗ на рассматриваемой ступени трансформации:

$$I_{\tilde{0}} = \frac{S_{\tilde{0}}}{\sqrt{3} U_{\text{cp.Hom}}}, \, \kappa A$$

а затем определяют реальное значение периодической составляющей тока КЗ:

$$I_{\text{K3}}^{(3)} = \frac{I_{6}}{Z_{\text{pe3}}}, \text{ KA}$$

Будем определять токи трехфазного КЗ по намеченным точкам.

Точка К1:

$$I_{6} = \frac{100}{\sqrt{3} \cdot 37} = 1,56 \text{ KA}$$

$$I_{\text{K3}}^{(3)} = \frac{1,56}{0,038} = 41,05 \text{ KA}$$

$$Z_{\text{pe3}} = \chi_{\text{сист}} = 0.038$$

Ударный ток КЗ

$$i_{\text{уд}} = \sqrt{2} k_{\text{уд}} I_{\text{к3}}^{(3)} = \sqrt{2} \cdot 1.8 \cdot 41,05 = 104,5 \text{ кA}$$

$$k_{\rm VJ}$$
 = 1.8 по таблице 1.1.

Точка К2:

$$I_{6} = \frac{100}{\sqrt{3} \cdot 37} = 1,56 \text{ KA}$$

$$I_{\text{K3}}^{(3)} = \frac{1,56}{0,078} = 20 \text{ KA}$$

$$Z_{\text{pe3}} = \sqrt{(X_{\text{CUCT}} + X_{\text{BJ}})^2 + (r_{\text{BJ}})^2} = \sqrt{(0.038 + 0.034)^2 + (0.03)^2} = 0.078$$

Ударный ток КЗ

$$i_{\rm уд} = \sqrt{2} \, k_{\rm уд} \, I_{\rm K3}^{(3)} = \sqrt{2} \cdot 1.8 \cdot 20 = 50,91 \, \text{кA}$$

 $k_{\rm VJ} = 1.8$ по таблице 1.1.

Точка К3:

$$I_{6} = \frac{100}{\sqrt{3} \cdot 6.3} = 9.16 \text{ KA}$$

$$I_{\text{K3}}^{(3)} = \frac{9,16}{0,729} = 12,57 \text{ KA}$$

$$Z_{\text{pe3}} = \sqrt{\left(x_{\text{CHCT}} + x_{\text{BJI}} + x_{\text{Tp}}\right)^2 + \left(r_{\text{BJI}}\right)^2} = \sqrt{\left(0.038 + 0.034 + 0.656\right)^2 + \left(0.03\right)^2} = 0.729$$

Ударный ток КЗ

$$i_{\text{уд}} = \sqrt{2} k_{\text{уд}} I_{\text{к3}}^{(3)} = \sqrt{2} \cdot 1,8 \cdot 12,57 = 31,99 \text{ кA}$$

 $k_{\rm VJ} = 1.8$ по таблице 1.1.

Точка К4:

$$I_{6} = \frac{100}{\sqrt{3} \cdot 6.3} = 9.16 \text{ KA}$$

$$I_{\text{K3}}^{(3)} = \frac{9,16}{0.876} = 10,46 \text{ KA}$$

$$Z_{\text{pe3}} = \sqrt{\left(x_{\text{сист}} + x_{\text{вл}} + x_{\text{тр}} + x_{\text{кл}}\right)^2 + \left(r_{\text{вл}} + r_{\text{кл}}\right)^2} =$$

$$\sqrt{(0,038+0,034+0,656+0,064)^2+(0,03+0,348)^2} = 0,876$$

Ударный ток КЗ

$$i_{\rm уд} = \sqrt{2} k_{\rm уд} I_{\rm к3}^{(3)} = \sqrt{2} \cdot 1,8 \cdot 10,46 = 26,83$$
 кА

 $k_{\rm уд} = 1.8$ по таблице 1.1.

Сводная ведомость токов КЗ

Расчетные т	К1	К2	К3	К4	
Токи КЗ, кА	$I_{\text{K3}}^{(3)}$	41,05	20,0	12,57	10,46
	$i_{\scriptscriptstyle m YJ}$	104,5	50,91	31,99	26,83

1.2.3. ЗАДАНИЕ

Для схемы электрической сети выше 1000 В (рис. 1.4) требуется составить схему замещения для расчета токов КЗ; определить сопротивления элементов схемы электроснабжения; наметить и обозначить на расчетной схеме и схеме замещения точки расчета токов КЗ; определить токи КЗ и составить «сводную ведомость токов КЗ». Кабельные линии к цеховой ТП и высоковольтному синхронному двигателю (СД) выполнены кабелями с бумажной поясной изоляцией. Среднее геометрическое расстояние между проводами воздушной линии электропередачи (ВЛ) принимаются любым, в соответствии с табл.1.11.

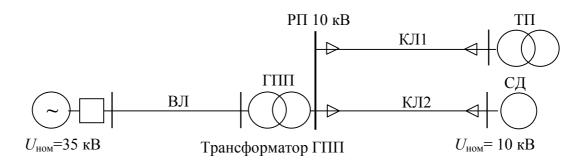


Рис.1.4. Расчетная схема распределительной сети

Варианты заданий приведены в таблице 1.13. Вариант задания определяется преподавателем.

Варианты заданий

Таблица 1.13

No	Систем а	ВЛ		Трансформатор ГПП		КЛ1		КЛ2	
вар	S _{кз} , MBA	S, mm ²	<i>l</i> . км	S, MBA	u_{K3} , %	S, mm ²	<i>l</i> . км	S, mm ²	<i>l</i> . км
1	5000	AC-240	5,6	40	11	150	1,2	95	0,5
2	4000	AC-185	10,2	32	10,5	120	0,6	70	1,2
3	3000	AC-150	5,4	25	10,5	120	0,8	95	0,6
4	2000	AC-120	6,8	16	10,5	95	1,2	50	0,8
5	2000	AC-150	10,5	25	11	95	1,2	120	0,3
6	3000	AC-120	4,1	32	11	70	0,4	70	0,2
7	1000	AC-95	2,2	16	10,5	50	0,2	70	0,5
8	1000	AC-70	3,4	10	10,5	35	0,4	50	0,2
9	2000	AC-240	12,5	32	11	120	2,2	95	1,1
10	3000	AC-185	5	25	10,5	70	3,5	50	0,4

1.2.4. ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет по лабораторной работе должен содержать:

- 1. Цель и порядок выполнения работы
- 2. Расчетную схему и схему замещения с указанием контрольных точек расчета токов КЗ
- 3. Результаты расчетов сопротивлений схемы замещения
- 4. Результаты расчетов токов КЗ
- 5. Сводную ведомость расчета токов КЗ
- 6. Выводы

1.2.5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Каковы цели расчета КЗ?
- 2. Какие условия и основные допущения принимаются при расчете токов КЗ в системах электроснабжения и почему?
- 3. Назовите отличия принципиальной схемы, расчетной схемы и схемы замещения.

- 4. Почему при моделировании элементов схемы электроснабжения для расчета токов КЗ не учитываются их поперечные составляющие?
- 5. В каких случаях допускается не учитывать активные сопротивления элементов схемы электроснабжения?
- 6. Объясните понятие ударного тока К3, периодической и апериодической составляющих
- 7. На каких участках электрической сети необходимо определять токи КЗ
- 8. Что понимается под термином «относительные единицы»?
- 9. Как выбираются и пересчитываются базисные условия для различных ступеней напряжения электроэнергетической системы?

Зависит ли результат расчета тока КЗ от выбора базисных условий?