Лекция 18

Тема: Основы функциональной электроники (Продолжение)

- 1) Микроминиатюризация и приборы наноэлектроники.
- 2) Микроминиатюризация МДП-приборов.
- 3) Физические явления, ограничивающие микроминиатюризацию

МИКРОМИНИАТЮРИЗАЦИЯ И ПРИБОРЫ НАНОЭЛЕКТРОНИКИ

Для классических компьютеров исключительно важной является проблема уменьшения рассеиваемой энергии в процессе вычислительных операций. Как уже отмечалось выше, МДП-полевые транзисторы с изолированным затвором не расходуют входную мощность при управлении током во вторичной цепи. В этом их принципиальное отличие от биполярных транзисторов и основное преимущество для повышения степени упаковки и интеграции при конструировании сверхбольших интегральных схем (СБИС).

Кроме этого, оказывается, что, используя пару комплементарных (дополняющих) *p*- и *n*-канальных МДП-транзисторов, можно практически свести к нулю и рассеиваемую выходную мощность. Действительно, для последовательно соединенных КМОП-транзисторов при подаче напряжения в активном режиме один из них всегда открыт, а другой – закрыт. Поэтому ток в выходной цепи в статическом режиме не протекает, а мощность выделяется только при переключениях транзисторов из одного состояния в другое. На рис. 143 приведена типичная топология инвертора на КМОП полевых транзисторах и схема, поясняющая его работу.

Это качество КМОП-транзисторов – низкие значения потребляемой входной и выходной мощности – является одним из главных преимуществ полевых транзисторов по сравнению с биполярными транзисторами.

МИКРОМИНИАТЮРИЗАЦИЯ МДП-ПРИБОРОВ

Полевые приборы со структурой металл - диэлектрик – полупроводник в силу универсальности характеристик нашли широкое

применение в интегральных схемах (ИС). Одна из основных задач микроэлектроники заключается в повышении степени интеграции и быстродействия интегральных схем. Для ИС на МДП-приборах благодаря чрезвычайно гибкой технологии их изготовления эта задача решается несколькими путями. В основе одного из подходов лежит принцип двойной диффузии. Эта технология получила КМОПназвание технологии, когда структура имеет планарный характер, и V-МОПтехнологии, когда структура транзистора имеет вертикальный характер. Другой подход связан с пропорциональной микроминиатюризацией МДП-транзистора обычного планарного получил название И высококачественной, или Н-МОП-технологии.

 $V_{_{\rm BX}}$

 $V_{_{\rm bux}}$

 $i_{\rm D}$

a

Рис. 143. Разрез инвертора на КМОП-полевых транзисторах (*a*) и принципиальная схема, поясняющая его работу (б)

Согласно основным положениям модели пропорциональной микроминиатюризации, при уменьшении длины канала в N раз для сохранения тех же характеристик транзистора другие его параметры (толщина окисла, ширина канала, напряжение питания) необходимо уменьшить в N раз, а концентрацию легирующей примеси в подложке увеличить в N раз. Действительно, при таком изменении, величина порогового напряжения V_т и величина проводимости канала практически изменяются. Быстродействие, определяемое временем не пролета носителей через канал, возрастет в N_{pas} , ток канала уменьшится в N^2 раз, рассеиваемая мощность уменьшится в N² раз. В табл. 8 приведена МДП-приборов, основных параметров изменения динамика проявляющаяся при пропорциональной микроминиатюризации.

Параметры прибора (схемы)	<i>n</i> -МОП с обогащун- ной нагрузкой, 1972	МОП, 1980	1989	2000	Коэф- фициент изменения
Длина канала <i>L</i> , мкм	6	2	1-0,6	0,13	N^{-1}
Поперечная диффузия <i>L_D</i> , мкм	1,4	0,4			N^{-1}
Глубина <i>р-п</i> -переходов <i>х</i> _в , мкм	2,0	0,8		0,07-0,13	N^{-1}
Толщина затворного окисла <i>d</i> _{ox} , нм	120	40	20	10	N^{-1}
Напряжение питания	4-15	2-4			N^{-1}

Таблица 8. Эволюция размеров и параметров МДП-приборов

<i>U</i> _{пит} , В					
Минимальная задержка вентиля <i>t</i> нс	12-15	0,5			N^{-1}
Мощность на вентиль <i>P</i> , мВт	1,5	0,4			N^{-1}
Количество транзисторов	2,5 тыс.	80 тыс.	1,2 млн	42 млн	N^{-1}
в процессоре Intel					

Идеи и принципы пропорциональной микроминиатюризации позволяют использовать масштабирование МДП-транзисторов при разработке интегральных схем на их основе. Такой подход позволил фирме *Intel* модернизировать процессоры персональных компьютеров каждые три-четыре года. В таблице 8 приведены этапы пропорциональной микроминиатюризации процессоров *Intel* за последние тридцать лет.

На рис. 144 показана в полулогарифмическом масштабе эволюция размеров МДП-транзистора и длины его канала. Обращает внимание на себя тот факт, что принципы пропорциональной микроминиатюризации позволили вплотную придвинуться к размерам базового элемента интегральных схем, ниже которых находится предел, обусловленный физическими ограничениями.

Таблица 9. Микроминиатюризация процессоров Intel

Модель Год выпуска	Год	Транзистор	Техпроцесс	Тактовая
	выпуска	Ы	техпроцесс	частота
4004	1971	2250	10 мкм	108 кГц
8008	1972	2500	10 мкм	200 кГц
8080	1974	5000	6 мкм	2 МГц

8086	1978	29000	Змкм	5-10 МГц
286	1982	120 000	1,5 мкм	6-12,5 МГц
386	1985	275 000	1,5-1 мкм	16-33 МГц
486DX	1989	1 180000	1-0,6 мкм	25-100 МГц
Pentium	1993	3 100 000	0,8-0,35 мкм	60-200 МГц
Pentium II	1997	7 500 000	0,35-0,25 мкм	233-450 МГц
Pentium III	1999	24 000 000	0,25-0, 13 мкм	450-1300 МГц
Pentium 4 (Willamette)	2000	42 000 000	0,18-0,13 мкм	1,4-2,0 ГГц
Pentium 4 (Northwood)	2001	55 000 000	0,1 Змкм	1,6-3,4 ГГц
Pentium 4 (Prescott)	2004	125 000 000	0,09 мкм	2,4-3,8 ГГц

Опыт разработки МДП-транзисторов с длинами канала 0,25-0,1 мкм показывает, что в таких приборах резко нарастает количество новых физических явлений, в том числе и квантовых. Принцип пропорциональной микроминиатюризации при этих значениях линейных размеров уже перестает работать.

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ, ОГРАНИЧИВАЮЩИЕ МИКРОМИНИАТЮРИЗАЦИЮ

Анализ показывает, что наряду с тенденцией уменьшения геометрических размеров каждого элемента в схемах проявляется тенденция к увеличению числа элементов в схеме. Если в начале 1960-х годов число элементов в схеме составляло десятки, то в начале 2000-х годов число элементов в схеме составляет сотни миллионов. Обращает на себя внимание тот факт, что в настоящее время плотность упаковки приближается к пределу, обусловленному физическими ограничениями.

Рис. 144. Динамическое уменьшение размеров транзистора при пропорциональной микроминиатюризации

Проблемы, физическими ограничениями связанные с рассмотрения основных физических микроминиатюризации, требуют запрещают дальнейшее явлений, которые уменьшение линейных геометрических размеров транзисторов, напряжений и токов транзистора, ограничивают его быстродействие и плотность упаковки. В табл. 10 перечислены предельно допустимые значения параметров и основные физические ограничения.

Минимальную длину канала ограничивает эффект, связанный со смыканием областей истока и стока при приложении напряжения к стоку V_{DS} . Поскольку ширина I_{ob} *p*-*n*-перехода, смещенного в обратном направлении, равна

$$I_{\rm of} = \left(\frac{2\varepsilon_s \varepsilon_0 (2\varphi_0 + V_{DS})}{qN_{\rm A}}\right)^{\frac{1}{2}},\tag{86}$$

Таблица 10. Физические ограничения микроминиатюризации

Величина параметра	Физическое ограничение		
Минимальная величина одного элемента (100×100) нм	Статистические флуктуации легирования подложки, разрешение фоторезиста, космические лучи и радиоактивность, конечная ширина <i>p-n</i> -перехода		
Минимальная толщина подзатворного изолятора 50 А	Туннельные токи через подзатворный диэлектрик из затвора в канал		
Минимальное напряжение питания 0,025 В	Тепловой потенциал kT/q		
Минимальная плотность тока 10 ⁻⁶ А/см ²	Дискретность заряда электрона, флуктуации встроенного заряда		
Минимальная мощность 10^{-12} Вт/элемент при $f = 1 \ \kappa \Gamma \mu$	Шумы, тепловая энергия, диэлектрическая постоянная		
Предельное быстродействие 0,03 нс	Скорость света		
Максимальное напряжение питания	Пробой подзатворного диэлектрика, смыкание областей истока и стока		
Максимальное легирование	Туннельный пробой <i>р-п</i> -перехода		

подложки	стока
Максимальная плотность тока	Электромиграция, падение напряжения на паразитных сопротивлениях контактов
Максимальная мощность	Теплопроводность подложки и компонентов схемы
Количество элементов на кристалл 10 ⁸	Совокупность всех ранее перечисленных ограничений

то минимальная длина канала должна быть больше удвоенной ширины *pn*-перехода $I_{\min} > 2I_{ob}$ и быть прямо пропорциональна корню квадратному от напряжения питания и обратно пропорциональна корню квадратному от уровня легирования подложки. На рис. 145 приведена зависимость L_{\min} от концентрации легирующей примеси N_A , толщины окисла d_{ox} и напряжения питания $U_{пит}$, рассчитанная по (86). Отсюда видно, что при толщине окисла $d_{ox} = 100$ A и концентрации акцепторов $N_A = 10^{17}$ см⁻³ возможно создание МОП-транзистора с длиной канала L = 0,4 мкм при напряжении питания 1-2 В. Дальнейшее увеличение легирующей концентрации в подложке может привести к туннельному пробою p^+ - n^+ -перехода.

Рис. 145. Минимальная длина канала L, определяемая физическими ограничениями в зависимости от напряжения питания, толщины окисла и уровня легирования

На рис. 146 показана зависимость напряжения пробоя такого перехода от легирующей концентрации в подложке.

Минимальную толщину подзатворного диэлектрика ограничивает сквозной ток через диэлектрик затвора. Считая ток туннельным и используя для тока выражение Фаулера – Нордгейма для туннелирования

через треугольный потенциальный барьер, получаем, что для толщины $d_{ox} > 50$ А плотность тока пренебрежимо мала. Предельное быстродействие определяется временем пролета носителей через канал при длине канала L = 1 мкм, скорости дрейфа, равной скорости света, и составляет t = 0,03 нс. Очевидно, что минимальное напряжение питания не может быть менее kT/q из-за флуктуации тепловой энергии.

Рис. 146. Зависимость напряжения пробоя *p*-*n*⁺-перехода стока от концентрации легирующей примеси в подложке *N*_A [30].