Задания на контрольную работу по дисциплине

«Физико-математические основы техники высоких напряжений»

Раздел 1.

Вариант 1

- 1. Почему проводящие тела имеют эквипотенциальные поверхности?
- 2. Между двумя точками в изолирующей среде, расположенными на расстоянии 2 мм, действует разность потенциалов 400 В. Определить среднюю напряженность электрического поля на заданном участке.

Вариант 2

- 1. Перечислить известные способы графического и аналитического выражения напряженности электрического поля.
- 2. Определить диэлектрическую проницаемость кварцевого стекла, если относительная диэлектрическая проницаемость равна 4,0.

Вариант 3

- 1. Как по заданному графику потенциала построить график напряженности электрического поля?
- 2. Определить электрическое точке поля смещение напряженностью 15 $\kappa B/M$, средой является изолирующей трансформаторное диэлектрическая масло, относительная проницаемость которого равна 2,2.

Вариант 4

напряжения по напряженности электрического поля?

2. Определить емкость конденсатора в мк Φ , если при частоте 50 Ги ток в цепи с конденсатором равен 5 мА, а напряжение, приложенное κ электродам -400 B.

Вариант 5

- 1. Какая форма условной поверхности, охватывающей заряд, будет наиболее рациональной при использовании теоремы Гаусса?
- 2. Конденсатор емкостью 3 мк Φ заряжен до напряжения 4 кB. Определить величину заряда, накопленного на его электродах.

Вариант 6

- 1. Почему зависимость, полученная для расчета напряженности электрического поля через заряд, оказывается практически непригодной?
- 2. Определить электрическое смещение в точке электрического поля напряженностью 10 кВ/см, если изолирующей средой является воздух.

Вариант 7

- 1. Как пересчитать емкость, выраженную в фарадах, в пикофарады?
- 2. Определить величину связанного заряда, индуктированного на проводящей пластинке в 1 см, внесенной в электрическое поле перпендикулярно силовым линиям. Напряженность электрического поля 12 кВ/см. Изолирующей средой является трансформаторное масло с относительной диэлектрической проницаемостью 2,5.

- 1. Что такое электрическое смещение?
- 2. Определить среднюю напряженность электрического поля на 1. Как определить пределы линейного интеграла для расчета участке протяженностью 0,4 мм, если разность потенциалов между точками, ограничивающими участок, 600 В.

Вариант 9

- 1. Какова величина относительной диэлектрической проницаемости воды и проводников?
- 2. Потенциалы электродов изолированного от земли конденсатора плоского конденсатора? равны +(-)2000 В. Определить напряжение, действующее между выводами.

Вариант 10

- 1. Что показывает и что характеризует величина относительной диэлектрической проницаемости?
- 2. Определить величину заряда конденсатора емкостью 2 мкФ, если напряжение между его выводами 100 В.

Вариант 11

- 1. В какой из двух сред при той же величине напряженности электрического поля будет больше электрическое смещение в фарфоре или слюде?
- 2. Плоский конденсатор с воздушной изоляцией имеет емкость 100 $n\Phi$ и заряжен до напряжения 2 кВ. Определить напряженность электрического поля между его электродами, имеющими площадь 625 ${\rm CM}^2$

Вариант 12

- 1. В чем заключается закон преломления вектора напряженности электрического поля на границе раздела двух изолирующих сред и как практически он используется?
- 2. Одиночная сфера в воздухе имеет емкость 20 $n\Phi$ и заряжена до напряжения 30 кВ. Определить напряженность электрического поля у поверхности сферы, если ее радиус 20 см.

Раздел 2.

Вариант 1

- 1. От каких геометрических параметров и как зависит емкость плоского конденсатора?
- 2. Для измерения напряжения $110~\kappa B$ применена схема емкостного делителя, состоящая из двух последовательно соединенных конденсаторов C1 и электрического вольтметра на напряжение $10~\kappa B$, шунтированного конденсатором емкостью $C2=100~n\Phi$. Определить емкость каждого из конденсаторов C1, если емкость вольтметра $C6=20~n\Phi$.

Вариант 2

- 1. В чем опасность воздушных включений между слоями многослойного конденсатора?
- 2. Плоский конденсатор с воздушной изоляцией и дисковыми электродами с закругленными краями имеет расстояние между электродами 2 см. Определить напряженность электрического поля в изоляции, если приложенное напряжение равно 40 кВ. Расчет повторить для случая, когда между электродами при том же расстоянии введена стеклянная пластина толщиной 1 см с относительной диэлектрической проницаемостью 6.

- 1. Какими параметрами следует задаться при расчете емкости плоского конденсатора?
- 2. Плоский воздушный конденсатор с расстоянием между пластинами a=0.5 см заряжен до напряжения Uo=10 кв. Определить изменение напряжения между электродами, если развести пластины на a=5 см, предположив, что заряд при этом не изменит своей величины.

Вариант 4

- 1. Почему средняя пробивная напряженность электрического поля воздуха уменьшается при увеличении расстояния между электродами?
- 2. Проходной цилиндрический изолятор имеет сечение токоведущего стержня 4 см2. Изоляция – текстолит (Епр=80 кВ/см). Напряжение электрического поля трехслойного плоского конденсатора, у которого между стержнем и фланцем 140 кВ. Коэффициент запаса прочности средний слой пробит, а один из электродов заземлен? K=1.4.

Вариант 5

- 1. Как устраняется влияние краевого эффекта у плоских и цилиндрических электродов?
- 2. Одиночная сфера с радиусом 🐾 см расположена в воздушной среде. Выразить емкость одиночной сферы в пикофарадах.

Вариант 6

- 1. Как изменяется емкость плоского конденсатора при постепенном заполнении трансформаторным маслом воздушного промежутка между электродами?
- $110~{\rm \kappa}B$ длиной $1000~{\rm m}$, с внешним диаметром его полной жилы $22.7~{\rm mm}$ и ${\rm \kappa}B/{\rm cm}$ наружным диаметром бумажной изоляции 46,7 мм при относительной диэлектрической проницаемости 3,5.

Вариант 7

- 1. Как регулировать напряженность электрического поля в слоях многослойного плоского конденсатора?
- 2. Определить емкость цилиндрического воздушного конденсатора и допустимое напряжение между его электродами, если диаметр внутреннего цилиндра 20 см, а наружного в е раз больше. Допустимую

напряженность электрического поля принять Емакс=30 кВ/см, длину конденсатора 100 см.

Вариант 8

- 1. Как выглядят графики потенциала напряженности
- 2. Одножильный кабель напряжением 40 кВ имеет радиус заземленной свинцовой оболочки 3,65 см. Определить: а) характер изменения напряженности электрического поля у поверхности токоведущей жилы при постепенном увеличении ее радиуса от 0,6 до 3,6 см; б) распределение потенциала в толще изоляции при неизменном радиусе внутренней жилы 0,6 см.

Вариант 9

- 1. Опишите устройство цилиндрического конденсаторного ввода.
- 2. Определить пробивное напряжение проходного цилиндрического изолятора, работающего в установке с напряжением 110 кв. Изолятор имеет три слоя изоляции: бакелизированная бумага, масло и фарфор с 2. Определить емкость одножильного маслонаполненного кабеля на пробивными напряженностями электрического поля 110 кВ/см, 63,7 65 кВ/см диэлектрических при проницаемостях соответственно 4,3; 2,5;5,5. Токоведущий стержень имеет радиус 2 см, а внешние радиусы слоев изоляции соответственного равны 3 см, 14 см и 16,6 см. Под пробоем изолятора подразумеваем в данном случае последовательный пробой всех слоев. Следует иметь в виду, что после пробоя одного из слоев изолятор нужно рассматривать как двухслойный.

Вариант 10

1. Какое соотношение наблюдается между напряженностями электрического поля на границе раздела двух смежных слоев?

Определить максимальную напряженность электрического поля в слое изоляции трехжильного кабеля на напряжение 35 кв, имеющего равные толщины поясной и фазной изоляций. Сечение алюминиевой жилы равно 185 $^{\rm MM}^2$, расчетный радиус жилы 8,7мм, толщина изоляции 12 мм.

Вариант 11

- 1. По какому математическому закону изменяется напряженность электрического поля однородном слое цилиндрического В конденсатора?
- 2. Цилиндрический двухслойный конденсатор имеет радиус внутреннего электрода 1,4 см, а наружного – 4,6 см. относительная диэлектрическая проницаемость внутреннего слоя изоляции наружного 2. Определить необходимые толщины слоев изоляции, с напряженность электрического поля 30 кВ/см. учетом равенства максимальных напряженностей электрических полей. Величина приложенного к конденсатору напряжения равна 130 κB .

Вариант 12

- 1. Как располагают материалы с различными величинами диэлектрической при проницаемости выравнивании значения максимальной напряженности электрического поля цилиндрического конденсатора?
- 2. Определить емкость одножильного высоковольтного кабеля, включенного в фазу трехфазной установки с номинальным напряжением 35 кВ и частотой 50 Гц, и накапливаемую в кабеле реактивную мощность, если сечение медной жилы 150 мм2, толщина бумажной изоляции 10 мм с диэлектрической проницаемостью 3,5, длина кабеля 10 км.

Вариант 13

- 1. Как воздушного изменяется емкость цилиндрического конденсатора при возникновении короны у центрального электрода?
- 2. Сферический конденсатор залит трансформаторным маслом с пробивной прочностью 100 кВ/см. Радиус наружного электрода 10 см. Определить радиус внутреннего электрода и максимальное напряжение, которое можно приложить к данному конденсатору.

Вариант 14

- 1. Почему при расчете изоляции цилиндрического конденсатора по условиям ее оптимального использования иногда приходится центральный электрод изготовлять полым?
- 2. Определить радиус сферического электрода испытательного 6, трансформатора на 2,5 млн. в при условии отсутствия короны,

Вариант 15

- 1. При каких соотношениях между радиусами цилиндрических электродов максимальная напряженность электрического поля минимальна?
- 2. Высоковольтный аппарат, работающий на напряжении 1,5 млн В, имеет шаровой вывод. Аппарат установлен в камере с расстоянием 8 м от центра шара до ее стен. Определить диаметр шарового электрода, допустимая напряженность электрического поля у его поверхности принята 20 кВ действ/см.

- 1. Как определяется емкость одиночной сферы?
- 2. Определить наибольшую напряженность электрического поля и емкость подвесного изолятора типа П-4,5 находящегося под напряжением 35 кВ, если внутренний радиус металлической шапки ковкого чугуна 5 см, а радиус заливки пестика 2,8 см. Материал

изолятора – с диэлектрической проницаемостью 6, а угол охвата внутреннего электрода 240 градусов Цельсия.

Вариант 17

- 1. Как объяснить увеличение неравномерности ОНЖОМ электрического поля шарового разрядника при заземлении одной из его сфер?
- 2. Протяженная полая шина высоковольтной лаборатории оканчивается шаром диаметром 20 см. Потенциал шины 200 кв. Определить напряженность электрического поля у поверхности шара и потенциал на расстоянии 110 см от поверхности шара.

Вариант 18

1. В чем заключается правило зеркального отображения?

Определить емкость плоского однослойного конденсатора, имеющего площадь электродов 10 см² и расстояние между ними 0,1 мм при относительной диэлектрической проницаемости, равной 6.

Вариант 19

найдено положение центров электрических осей двух заряженных цилиндров?

Плоский конденсатор емкостью $6*10^{-10}$ ф включен на напряжение 200 кВ. Определить величину электрического смещения в слое его изоляции с относительной электрической проницаемостью, равной 6, если площадь электродов 1^{M^2}

Вариант 20

- 1. В чем заключается особенность выражения для потенциальных коэффициентов точек, принадлежащих поверхности нулевого потенциала?
- 2. Определить напряжение на выводах трехслойного конденсатора, если напряженности электрического поля в его слоях равны 20 кВ/см, 10 кВ/см, 5 кВ/см при толщинах слоев, соответственно равных 2,4 и 6 MM.

Вариант 21

- 1. Какое практическое применение имеет система из двух сфер?
- 2. Определить напряженности электрического поля в слоях плоского трехслойного конденсатора, заряженного до напряжения 10 кв, если емкости его слоев соответственно равны 6;3;1,5мк Φ при толщинах слоев 1,2 и 4 мм.

Вариант 22

- 1. Какие меры предосторожности и почему следует применять при работе монтеров на одной обесточенной цепи двухцепных линий электропередачи?
- 2. Одножильный кабель имеет радиус свинцовой защитной 1. На основании какого геометрического построения может быть оболочки, равный 10 см, радиус токоведущей жилы – 1 см. Определить потенциалы в толще его изоляции для точек с радиусами 1,2,4,6 и 10 см, если напряжение, приложенное между жилой и оболочкой, равно 100 кВ, а защитная оболочка заземлена.

- 1. Поясните принцип осуществления «емкостного отбора» мощности от высоковольтной линии электропередачи?
- 2. При конструировании кабеля задан радиус его токоведущей жилы 5 мм. Определить радиус его наружной защитной оболочки и запас

прочности для изоляции, если напряжение, приложенное к кабелю, -30 кB, а пробивная прочность материала 30 кB/мм.

Вариант 24

- 1. Как изменяется формула для рабочей емкости провода двухпроводной линии передачи при заземлении одного из проводов?
- 2. Определить емкость цилиндрического ввода длиной в 1 м, если радиус центрального электрода 1 см, толщина бакелитового слоя на электроде 2 см, а толщина фарфора между бакелитом и наружным фланцем 0,6 см. Относительная диэлектрическая проницаемость бакелита 4,5, фарфора 6.

Вариант 25

- 1. Сравните между собой рабочую емкость и емкость линии для двухпроводной системы. Какая из указанных емкостей больше?
- 2. Определить емкость сферического конденсатора, диэлектриком которого служит трансформаторное масло с относительной диэлектрической проницаемостью и 2,5, радиусы сферических электродов равны 2 и 20 см.

Раздел 3.

Задача. Рассчитать напряжение начала короны $U_{\rm K}$ на проводах ВЛ СВН для расщепленного провода (исходные данные приведены в таблице 2.1) при варьировании шага расщепления d от 10 до 80 см (Δd =10 см). Построить зависимости $E_{\rm пp.}$ =f(d), C=f(d), $U_{\rm K}$ =f(d), и выбрать оптимальный шаг расщепления.

Задания по вариантам

Вари ант	U_{hom} ,	Провод	n	Диаметр провода, мм	Среднегеометричес кая высота
	кВ				Run BBICOTU

					подвеса проводов,
					M
1	330	2*AC-300/39	2	24,0	18,0
2	330	2*AC-400/51	2	27,5	19,0
3	330	2*AC-300/48	2	24,1	19,5
4	330	2*AC-400/64	2	27,7	17,5
5	500	3*AC-330/43	3	25,2	18,0
6	500	3*AC-400/51	3	27,5	18,5
7	500	3*AC-500/64	3	30,6	17,5
8	500	3*AC-300/57	3	24,5	17,0
9	500	3*AC-400/64	3	27,7	16,5
10	500	3*AC-500/26	3	30,0	16,0
11	500	4*AC-240/39	4	21,6	15,5
12	500	4*AC-240/56	4	22,4	15,0
13	750	5*AC-300/48	5	25,2	18,2
14	750	5*AC-240/56	5	22,4	30,0
15	750	5*AC-300/57	5	24,5	29,5
16	750	5*AC-240/39	5	21,6	29,0
17	750	5*AC-300/48	5	24,1	28,5
18	750	4*AC-600/72	4	33,2	28,0
19	750	4*AC-400/93	4	29,1	27,5

20	750	4*AC-240/56	4	21,6	27,0
21	750	4*AC-500/64	4	30,6	26,5
22	750	4*AC-450/56	4	28,8	26,0
23	1150	8*AC-240/56	8	22,4	25,0
24	1150	8*AC-330/43	8	25,2	24,0
25	1150	8*AC-300/39	8	24,0	24,5