Задачи для самостоятельного решения по теме

практического занятия 10

Указание. Кроме имеющихся материалов курса, Вы также можете использовать, например, материалы из учебников [1]: глава IX, § 44-45 и [2]: глава 11, § 4 (см. прилагаемый список литературы).

1. Найти
$$\frac{dz}{dt}$$
, если $z = z(x, y)$, $x = x(t)$, $y = y(t)$:

a)
$$z = x^2 y^3 u$$
, $x = t$, $y = t^2$, $u = \sin t$. **Omeem:** $t^7 (8 \sin t + t \cos t)$

6)
$$z = x^y$$
, $x = \ln t$, $y = \sin t$. **Omsem:** $y x^{y-1} \frac{1}{t} + x^y \ln x \cos t$.

2. Найти
$$\frac{\partial z}{\partial x}$$
 и $\frac{dz}{dx}$:

a)
$$z = \frac{x^2 - y}{x^2 + y}$$
, $z \partial e \ y = 3x + 1$.

Omsem:
$$\frac{\partial z}{\partial x} = \frac{4x(3x+1)}{(x^2+3x+1)^2}, \ \frac{dz}{dx} = \frac{2x(3x+2)}{(x^2+3x+1)^2}.$$

б)
$$z = x^2 y$$
, где $y = \cos x$.

Omeem:
$$\frac{\partial z}{\partial x} = 2x \cos x$$
, $\frac{dz}{dx} = x(2\cos x - x\sin x)$.

3. Для данных
$$z = f(x, y), \ x = x(u, v), \ y = y(u, v)$$
 найти $\frac{\partial z}{\partial u}, \ \frac{\partial z}{\partial v}$ и dz :

a)
$$z = x^3 + y^3$$
, $z \partial e \ x = u v$, $y = \frac{u}{v}$.

Omsem:
$$dz = 3u^2 \left(v^3 + \frac{1}{v^3}\right) du + u^3 \left(3v^2 - \frac{3}{v^4}\right) dv$$
.

δ)
$$z = \cos xy$$
, $ε \partial e x = u e^v$, $y = v \ln u$.

Omsem:
$$dz = -\left(ye^{v} + x\frac{v}{u}\right)\sin xy \, du - (ye^{v} + x\ln u)\sin xy \, dv.$$

B)
$$z = \sqrt{x + y}$$
, $z \partial e^{-x} = u \operatorname{tg} v$, $y = u \operatorname{ctg} v$

Omsem:
$$dz = \frac{1}{2\sqrt{x+y}} \left[\frac{2du}{\sin 2v} + \left(\frac{1}{\cos^2 v} - \frac{1}{\sin^2 v} \right) u \, dv \right].$$

4. Найти производные y'(x) неявных функций, заданных уравнениями:

a)
$$xe^{2y} - y \ln x = 8$$
.

Omsem:
$$y' = \frac{e^{2y} - \frac{y}{x}}{\ln x - 2xe^{2y}}$$
.

$$6) \ln \frac{\sqrt{x^2 + y^2}}{2} = \operatorname{arctg} \frac{y}{x}.$$

Ombem:
$$y' = \frac{x+y}{x-y}$$
.

5. Найти производные $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ и dz для неявных функций z=z(x,y),

a)
$$z^3 - 3xvz = R^2$$
.

Omeem:
$$dz = \frac{yzdx + xzdy}{z^2 - xy}$$
.

6)
$$x + y + z = e^z$$
.

Omsem:
$$dz = \frac{dx + dy}{x + y + z - 1}$$
.

6. Найти уравнения касательной плоскости и нормали к поверхности:

a)
$$z = 1 + x^2 + y^2$$
 в точке $M(1:1:3)$.

Omsem:
$$2x + 2y - z = 1$$
, $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-3}{-1}$.

определяемых следующими уравнениями:

б)
$$x^2 + y^2 - z^2 = -1$$
 в точке $M(2:2:3)$.

Omsem:
$$2x + 2y - 3z + 1 = 0$$
, $\frac{x-2}{2} = \frac{y-2}{2} = \frac{z-3}{-3}$.

в)
$$z = \ln(x^2 + y^2)$$
 в точке $M(1:0:0)$.

Omsem:
$$z - 2x + 2 = 0$$
, $\frac{x-1}{2} = \frac{y}{0} = \frac{z}{-1}$.

7. Составить уравнения касательных плоскостей к поверхности $x^2 + 2y^2 + 3z^2 = 21$, параллельных плоскости x + 4y + 6z = 0.

Omsem:
$$x + 4y + 6z \pm 21 = 0$$
.