Глава 1

АЛГЕБРА ЛОГИКИ

§ 1. ПОНЯТИЕ ВЫСКАЗЫВАНИЯ

Основным (неопределяемым) понятием математической логики является понятие «простого высказывания». Под высказыванием обычно понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом мы можем сказать, истинно оно или ложно в данных условиях места и времени. Логическими значениями высказываний являются «истина» и «ложь».

Приведем примеры высказываний.

- 1) Великий Новгород стоит на Волхове.
- 2) Париж столица Англии.
- 3) Карась не рыба.
- 4) Число 6 делится на 2 и на 3.
- 5) Если юноша окончил среднюю школу, то он получает аттестат зрелости.

Высказывания 1), 4), 5) истинны, а высказывания 2) и 3) ложны.

Очевидно, предложение «Да здравствуют наши спортсмены!» не является высказыванием.

Высказывание, представляющее собой одно утверждение, принято называть простым или элементарным. Примерами элементарных высказываний могут служить высказывания 1) и 2).

Высказывания, которые получаются из элементарных с помощью грамматических связок «не», «и», «или», «если ..., то ...», «тогда и только тогда», принято называть сложными или составными. Так, высказывание 3) получается из простого высказывания «Карась — рыба» с помощью отрицания «не»,

высказывание 4) образовано из элементарных высказываний «Число 6 делится на 2», «Число 6 делится на 3», соединенных союзом «и». Высказывание 5) получается из простых высказываний «Юноша окончил среднюю школу», «Юноша получает аттестат зрелости» с помощью грамматической связки «если ..., то ...». Аналогично сложные высказывания могут быть получены из простых высказываний с помощью грамматических связок «или», «тогда и только тогда».

В алгебре логики все высказывания рассматриваются только с точки зрения их логического значения, а от их житейского содержания отвлекаются. Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

В дальнейшем будем элементарные высказывания обозначать малыми буквами латинского алфавита: $x, y, z, \ldots, x_1, x_2, x_3, \ldots$; истинное значение высказывания — буквой u или цифрой 1, а ложное значение — буквой n или цифрой n0.

Если высказывание a истинно, то будем писать a=1, а если a ложно, то a=0.

§ 2. ЛОГИЧЕСКИЕ ОПЕРАЦИИ НАД ВЫСКАЗЫВАНИЯМИ

1. Отрицание. Отрицанием высказывания x называется новое высказывание, которое является истинным, если высказывание x ложно, и ложным, если высказывание x истинно.

Отрицание высказывания x обозначается \overline{x} и читается «не x» или «неверно, что x».

Логические значения высказывания \overline{x} можно описать с помощью таблицы:

x	\overline{x}
1	0
0	1

Таблицы такого вида принято называть таблицами истинности.

Пусть x — высказывание. Так как \overline{x} также является высказыванием, то можно образовать отрицание высказывания \overline{x} , то есть высказывание \overline{x} , которое называется двойным отрицанием высказывания x. Ясно, что логические значения высказываний x и \overline{x} совпадают.

Например, для высказывания «Река Волхов вытекает из озера Ильмень» отрицанием будет высказывание «Неверно, что река Волхов вытекает из озера Ильмень» или «Река Волхов не вытекает из озера Ильмень», а двойным отрицанием будет высказывание «Неверно, что река Волхов не вытекает из озера Ильмень».

2. Конъюнкция (логическое умножение). Конъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если оба высказывания x, y истинны, и ложным, если хотя бы одно из них ложно.

Конъюнкция высказываний x, y обозначается символом x&y или $(x\land y)$, читается «x и y». Высказывания x, y называются членами конъюнкции.

Логические значения конъюнкции описываются следуюшей таблицей истинности:

x	y	x&y
1	1	1
1	0	0
0	1	0
0	0	0

Например, для высказываний «6 делится на 2», «6 делится на 3» их конъюнкцией будет высказывание «6 делится на 2, и 6 делится на 3», которое, очевидно, истинно.

Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания, далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.

Из определения операции конъюнкции и отрицания ясно, что высказывание $x\&\overline{x}$ всегда ложно.

3. Дизъюнкция (логическое сложение). Дизъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний x, y истинно, и ложным, если они оба ложны.

Дизъюнкция высказываний x, y обозначается символом $y \lor y$, читается «x или y». Высказывания x, y называются членами дизъюнкции.

Логические значения дизъюнкции описываются следующей таблицей истинности:

x	y	$x \vee y$
1	1	1
1	0	1
0	1	1
0	0	0

Например, высказывание «В треугольнике DFE угол D или угол E острый» истинно, так как обязательно истинно хотя бы одно из высказываний: «В треугольнике DFE угол D острый», «В треугольнике DFE угол E острый».

В повседневной речи союз «или» употребляется в различном смысле: исключающем и не исключающем. В алгебре логики союз «или» всегда употребляется в не исключающем смысле.

Из определения операции дизъюнкции и отрицания ясно, что высказывание $x \lor \overline{x}$ всегда истинно.

4. Импликация. *Импликацией* двух высказываний x, y называется новое высказывание, которое считается ложным, если x истинно, а y — ложно, и истинным во всех остальных случаях.

Импликация высказываний x, y обозначается символом $x \to y$, читается «если x, то y» или «из x следует y». Высказывание x называют условием или посылкой, высказывание y — следствием или заключением, высказывание « $x \to y$ » — следованием или импликацией.

Логические значения операции импликации описываются следующей таблицей истинности:

x	y	$x \rightarrow y$
1	1	1
1	0	0
0	1	1
0	0	1

Например, высказывание «Если число 12 делится на 6, то оно делится на 3», очевидно, истинно, так как здесь истинна посылка «Число 12 делится на 6» и истинно заключение «Число 12 делится на 3».

Употребление слов «если ..., то ...» в алгебре логики отличается от употребления их в обыденной речи, где мы, как правило, считаем, что, если высказывание x ложно, то высказывание «Если x, то y» вообще не имеет смысла. Кроме того, строя предложение вида «если x, то y» в обыденной речи, мы всегда подразумеваем, что предложение y вытекает из предложения x. Употребление слов «если ..., то ...» в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.

Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «Если x, то y». Если при этом известно, что x истинно и доказана истинность импликации $x \to y$, то мы вправе сделать вывод об истинности заключения y.

5. Эквиваленция. Эквиваленцией (или эквивалентностью) двух высказываний x, y называется новое высказывание, которое считается истинным, когда оба высказывания x, y либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.

Эквиваленция высказываний x, y обозначается символом $x \leftrightarrow y$, читается «для того, чтобы x, необходимо и достаточно, чтобы y» или «x тогда и только тогда, когда y». Высказывания x, y называются членами эквиваленции.

Логические значения операции эквиваленции описываются следующей таблицей истинности:

x	y	$x \leftrightarrow y$
1	1	1
1	0	0
0	1	0
0	0	1

Например, эквиваленция «Треугольник SPQ с вершиной S и основанием PQ равнобедренный тогда и только тогда, когда $\angle P = \angle Q$ » является истинной, так как высказывания «Треугольник SPQ с вершиной S и основанием PQ равнобедренный» и «В треугольнике SPQ с вершиной S и основанием PQ $\angle P = \angle Q$ » либо одновременно истинны, либо одновременно ложны.

Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в форме необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности, и доказав истинность самой эквивалентности, мы заключаем об истинности или ложности второго члена эквивалентности.

§ 3. ФОРМУЛЫ АЛГЕБРЫ ЛОГИКИ

С помощью логических операций над высказываниями из заданной совокупности высказываний можно строить различные сложные высказывания. При этом порядок выполнения операций указывается скобками. Например, из трех высказываний $x,\ y,\ z$ можно построить высказывания

$$(x\&y)\lor \overline{z}$$
 и $x\to \overline{(y\lor (x\&z))}$.

Первое из них есть дизъюнкция конъюнкции x,y и отрицания высказывания z, а второе высказывание есть импликация, посылкой которой является высказывание x, а заключением — отрицание дизъюнкции высказывания y и конъюнкции высказываний x,z.

Всякое сложное высказывание, которое может быть получено из элементарных высказываний посредством применения логических операций отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции, называется формулой алгебры логики. Формулы алгебры логики будем обозначать большими буквами латинского алфавита A, B, C, \ldots

Для упрощения записи формул принят ряд соглашений. Скобки можно опускать, придерживаясь следующего порядка действий: конъюнкция выполняется раньше, чем все остальные операции, дизъюнкция выполняется раньше, чем импликация и эквивалентность. Если над формулой стоит знак отрицания, то скобки тоже опускаются.

В связи с этим формулы

$$(x\&y)\lor \overline{z}$$
 и $x\to \overline{(y\lor (x\&z))}$

могут быть записаны так:

$$x\&y \lor \overline{z}$$
 и $x \to \overline{y \lor x\&z}$.

Логическое значение формулы алгебры логики полностью определяется логическими значениями входящих в нее элементарных высказываний. Например, логическим значением формулы $\overline{x}\&y \vee \overline{z}$ в случае, если $x=1,\ y=1,\ z=0$, будет истина, то есть $\overline{x}\&y \vee \overline{z}=1$.

Все возможные логические значения формулы, в зависимости от значений входящих в нее элементарных высказываний, могут быть описаны полностью с помощью таблицы истинности.

Например, для формулы $\overline{x} \lor y \to x \& \overline{y}$ таблица истинности имеет вид:

x	y	\overline{x}	\overline{y}	$\overline{x} \lor y$	$x\&\overline{y}$	$\overline{x} \lor y \to x \& \overline{y}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	1	0	0
0	0	1	1	1	0	0

Легко видеть, что, если формула содержит n элементарных высказываний, то она принимает 2^n значений, состоящих из нулей и единиц, или, что то же, таблица содержит 2^n строк.

§ 4. РАВНОСИЛЬНЫЕ ФОРМУЛЫ АЛГЕБРЫ ЛОГИКИ

Определение. Две формулы алгебры логики A и B называются *равносильными*, если они принимают одинаковые логические значения на любом наборе значений входящих в формулы элементарных высказываний.

Равносильность формул будем обозначать знаком \equiv , а запись $A \equiv B$ означает, что формулы A и B равносильны.

Например, равносильны формулы:

$$\overline{\overline{x}} \equiv x,$$

$$x \lor x \equiv x,$$

$$(x \& \overline{x}) \lor y \equiv y.$$

Формула A называется тождественно истинной (или тавтологией), если она принимает значение 1 при всех значениях входящих в нее переменных.

Например, тождественно истинны формулы $x \vee \overline{x},$ $x \to (y \to x).$

Формула A называется moждественно ложной, если она принимает значение 0 при всех значениях входящих в нее переменных.

Например, тождественно ложна формула $x\&\overline{x}$.

Ясно, что отношение равносильности рефлексивно, симметрично и транзитивно.

Между понятиями равносильности и эквивалентности существует следующая связь: если формулы A и B равносильны, то формула $A \leftrightarrow B$ — тавтология, и обратно, если формула $A \leftrightarrow B$ — тавтология, то формулы A и B равносильны.

Важнейшие равносильности алгебры логики можно разбить на три группы.

1. Основные равносильности:

- 1. $x \& x \equiv x$ 2. $x \lor x \equiv x$ - законы идемпотентности.
- 3. $x\&u \equiv x$.
- 4. $x \lor u \equiv u$.

Алгебра логики 19

- 5. $x \& n \equiv n$.
- 6. $x \vee \Lambda \equiv x$.
- 7. $x \& \overline{x} \equiv \Lambda$ закон противоречия.
- 8. $x \vee \overline{x} \equiv u$ закон исключенного третьего.
- 9. $\overline{x} \equiv x$ закон снятия двойного отрицания.
- 10. $x\&(y\lor x)\equiv x$ 11. $x\lor(y\&x)\equiv x$ } — законы поглощения.

Докажем один из законов поглощения. Рассмотрим формулу $A\equiv x\&\ (y\lor x)$. Если в этой формуле x=1, то, очевидно, $y\lor x=1$ и тогда $x\&\ (y\lor x)=1$ как конъюнкция двух истинных высказываний. Пусть теперь в формуле $A\ x=0$. Но тогда по определению операции конъюнкции будет ложной и конъюнкция $x\&\ (y\lor x)$. Итак, во всех случаях значения формулы A совпадают со значениями x, а поэтому $A\equiv x$.

2. Равносильности, выражающие одни логические опеланрации через другие:

- 1. $x \leftrightarrow y \equiv (x \to y) \& (y \to x)$.
- $2. \quad x \to y \equiv \overline{x} \vee y.$
- $\left. egin{aligned} 3. & \overline{x\&y} & \equiv \overline{x} \lor \overline{y} \\ 4. & \overline{x \lor y} & \equiv \overline{x\&y} \end{aligned}
 ight\} -$ законы де Моргана.
- 5. $x \& y \equiv \overline{x} \lor \overline{y}$
- 6. $x \vee y \equiv \overline{x} \sqrt[3]{y}$.

Ясно, что равносильности 5 и 6 получаются из равносильностей 3 и 4 соответственно, если от обеих частей последних взять отрицания и воспользоваться законом снятия двойного отрицания. Таким образом, в доказательстве нуждаются первые четыре равносильности. Докажем две из них: первую и третью.

Так как при одинаковых логических значениях x и y истинными являются формулы $x \leftrightarrow y, \ x \to y, \ y \to x,$ то истинной будет и конъюнкция $(x \to y) \& (y \to x)$. Следовательно, в этом случае обе части равносильности имеют одинаковые истинные значения.

Пусть теперь x и y имеют различные логические значения. Тогда будут ложными эквивалентность $x \leftrightarrow y$ и одна из двух импликаций $x \to y$ или $y \to x$. При этом будет ложной и конъюнкция $(x \to y)\&(y \to x)$. Таким образом, в этом случае обе части равносильности имеют одинаковые логические значения.

Рассмотрим равносильность 3. Если x и y принимают одновременно истинные значения, то будет истинной конъюнкция x&y и ложным отрицание конъюнкции $\overline{x\&y}$. В то же время будут ложными \overline{x} , и \overline{y} , а поэтому будет ложной и дизъюнкция $\overline{x} \lor \overline{y}$.

Пусть теперь хотя бы одна из переменных x или y принимает значение ложь. Тогда будет ложной конъюнкция x&y и истинной ее отрицание. В то же время отрицание хотя бы одной из переменных будет истинным, а поэтому будет истинной и дизъюнкция $\overline{x} \vee \overline{y}$.

Следовательно, во всех случаях обе части равносильности 3 принимают одинаковые логические значения.

Аналогично доказываются равносильности 2 и 4.

Из равносильностей этой группы следует, что всякую формулу алгебры логики можно заменить равносильной ей формулой, содержащей только две логические операции: конъюнкцию и отрицание или дизъюнкцию и отрицание.

Дальнейшее исключение логических операций невозможно. Так, если мы будем использовать только конъюнкцию, то уже такая формула как отрицание x не может быть выражена с помощью операции конъюнкции.

Однако существуют операции, с помощью которых может быть выражена любая из пяти логических операций, которыми мы пользуемся. Такой операцией является, например, операция «Штрих Шеффера». Эта операция обозначается символом $x\mid y$ и определяется следующей таблицей истинности:

x	y	$x \mid y$
1	1	0
1	0	1
0	1	1
0	0	1

Очевидно, имеют место равносильности:

- 1. $\overline{x} \equiv x \mid x$
- 2. $x \& y \equiv (x | y) | (x | y)$.

Из этих двух равносильностей следует, что всякая формула алгебры логики может быть заменена равносильной формулой, содержащей только операцию «Штрих Шеффера».

Отметим, что $x \mid y \equiv \overline{x \& y}$.

Аналогично может быть введена операция $\varphi(x,y) \equiv \overline{x \vee y}$.

3. Равносильности, выражающие основные законы алгебры логики:

- 1. $x \& y \equiv y \& x$ коммутативность конъюнкции.
- 2. $x \lor y \equiv y \lor x$ коммутативность дизъюнкции.
- 3. $x\&(y\&z) \equiv (x\&y)\&z$ ассоциативность конъюнкции.
- 4. $x \lor (y \lor z) \equiv (x \lor y) \lor z$ ассоциативность дизъюнкции.
- 5. $x\&(y\lor z)\equiv (x\&y)\lor (x\&z)$ дистрибутивность конъюнкции относительно дизъюнкции.
- 6. $x \lor (y \& z) \equiv (x \lor y) \& (x \lor z)$ дистрибутивность дизъюнкции относительно конъюнкции.

Докажем последний из перечисленных законов. Если x=1, то будут истинными формулы $x\vee (y\&z), \, x\vee y, \, x\vee z.$ Но тогда будет истинной и конъюнкция $(x\vee y)\&(x\vee z).$ Таким образом, при x=1 обе части равносильности 6 принимают одинаковые логические значения (истинные).

Пусть теперь x=0. Тогда $x\vee (y\&z)\equiv y\&z,\ x\vee y\equiv y$ и $x\vee z\equiv z$, а поэтому и конъюнкция $(x\vee y)\&(x\vee z)\equiv y\&z$. Следовательно, здесь обе части равносильности 6 равносильны одной и той же формуле y&z, и поэтому принимают одинаковые логические значения.

§ 5. РАВНОСИЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ФОРМУЛ

Используя равносильности I, II и III групп можно часть формулы или формулу заменить равносильной ей формулой. Такие преобразования формул называются равносильными.

Равносильные преобразования используются для доказательства равносильностей, для приведения формул к заданному виду, для упрощения формул.

Формула A считается проще равносильной ей формулы B, если она содержит меньше букв, меньше логических операций. При этом обычно операции эквивалентность и импликация заменяются операциями дизъюнкции и конъюнкции, а отрицание относят к элементарным высказываниям. Рассмотрим ряд примеров.

1. Доказать равносильность $x \leftrightarrow y \equiv \overline{x} \& \overline{y} \lor x \& y$.

Используя равносильности I, II и III групп запишем цепочку равносильных формул:

$$x \leftrightarrow y \equiv (x \to y) \& (y \to x) \equiv (\overline{x} \lor y) \& (\overline{y} \lor x) \equiv$$
$$\equiv \overline{x} \& \overline{y} \lor \overline{x} \& x \lor y \& \overline{y} \lor y \& x \equiv \overline{x} \& \overline{y} \lor 0 \lor 0 \lor y \& x \equiv$$
$$\equiv \overline{x} \& \overline{y} \lor y \& x \equiv \overline{x} \& \overline{y} \lor x \& y.$$

2. Упростить формулу $(\overline{x \lor y} \to x \lor y) \& y$.

Запишем цепочку равносильных формул:

$$(\overline{x \lor y} \to x \lor y) \& y \equiv \left(\overline{\overline{x \lor y}} \lor x \lor y\right) \& y \equiv \\ \equiv (x \lor y \lor x \lor y) \& y \equiv (x \lor y) \& y \equiv y.$$

3. Доказать тождественную истинность формулы $(x \to y) \to ((y \to z) \to (x \lor y \to z))$.

Запишем цепочку равносильных формул:

$$\begin{array}{l} (x \to y) \to ((y \to z) \to (x \vee y \to z)) \equiv \\ \equiv \overline{(\overline{x} \vee y)} \vee (\overline{y} \vee \overline{z} \vee \overline{x} \vee y \vee z) \equiv \overline{x} \& \overline{y} \vee \overline{y} \& \overline{z} \vee \overline{x} \& \overline{y} \vee z \\ \equiv x \& \overline{y} \vee y \& \overline{z} \vee \overline{x} \& \overline{y} \vee z \equiv (x \& \overline{y} \vee \overline{x} \& \overline{y}) \vee (y \& \overline{z} \vee z) \equiv \\ \equiv \overline{y} \& (x \vee \overline{x}) \vee (y \vee z) \& (\overline{z} \vee z) \equiv \overline{y} \& 1 \vee (y \vee z) \& 1 \equiv \\ \equiv \overline{y} \vee y \vee z \equiv (\overline{y} \vee y) \vee z \equiv 1 \vee z \equiv 1. \end{array}$$

§ 6. АЛГЕБРА БУЛЯ

Равносильности III группы говорят о том, что алгебра логики обладает коммутативными и ассоциативными законами относительно операций конъюнкции и дизъюнкции и дистрибутивным законом конъюнкции относительно дизъюнкции, эти же законы имеют место и в алгебре чисел. Поэтому над формулами алгебры логики можно производить те же преобразования, которые проводятся в алгебре чисел (раскрытие скобок, заключение в скобки, вынесение за скобки общего множителя).

Но в алгебре логики возможны и другие преобразования, основанные на использовании равносильностей:

$$\begin{split} &(x\&y)\vee z\equiv (x\vee z)\,\&\,(y\vee z)\,,\\ &x\&\,(y\vee x)\equiv x,\\ &x\vee (y\&x)\equiv x,\\ &\overline{x\&y}\equiv \overline{x}\vee \overline{y},\\ &\overline{x\vee y}\equiv \overline{x}\&\overline{y} &\text{ и т. д.} \end{split}$$

Эта особенность позволяет прийти к важным и далеко идущим обобщениям.

Рассмотрим непустое множество M элементов любой природы $\{x, y, z, \dots\}$, в котором определены отношение «=» (равно) и три операции: «+» (сложение), «·» (умножение), «-» (отрицание), подчиняющиеся следующим аксиомам:

Коммутативные законы:

1a.
$$x + y = y + x$$
, 16. $x \cdot y = y \cdot x$.

Ассоциативные законы:

2a.
$$x + (y + z) = (x + y) + z$$
, 26. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

Дистрибутивные законы:

3a.
$$(x+y)\cdot z=(x\cdot z)+(y\cdot z),\$$
36. $(x\cdot y)+z=(x+z)\cdot (y+z).$

Законы идемпотентности:

4a.
$$x + x = x$$
. 46. $x \cdot x = x$.

Закон снятия двойного отрицания:

5. $\overline{\overline{x}} = x$.

Законы де-Моргана:

6a.
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$
, 66. $\overline{x \cdot y} = \overline{x} + \overline{y}$.

Законы поглощения:

7a.
$$x + (y \cdot x) = x$$
, 76. $x \cdot (y + x) = x$.

Такое множество M называется булевой алгеброй.

Если под основными элементами x, y, z, \ldots подразумевать высказывания, под операциями «+», «·», «-» дизъюнкцию, конъюнкцию, отрицание соответственно, а знак равенства рассматривать как знак равносильности, то, как следует из равносильностей I, II и III групп, все аксиомы булевой алгебры выполняются.

В тех случаях, когда для некоторой системы аксиом удается подобрать конкретные объекты и конкретные соотношения между ними так, что все аксиомы выполняются, говорят, что найдена интерпретация (или модель) данной системы аксиом.

Значит, алгебра логики является интерпретацией булевой алгебры. Алгебра Буля имеет и другие интерпретации. Например, если под основными элементами x, y, z, \ldots множества M подразумевать множества, под операциями «+», «·», «-» — объединение, пересечение, дополнение соответственно, а под знаком равенства — знак равенства множеств, то мы приходим к алгебре множеств. Нетрудно убедиться, что в алгебре множеств все аксиомы алгебры Буля выполняются.

Среди различных интерпретаций булевой алгебры имеются интерпретации и технического характера. Одна из них будет рассмотрена ниже. Как будет показано, она играет важную роль в современной автоматике.

§ 7. ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ

Как уже отмечалось, значение формулы алгебры логики полностью зависит от значений входящих в эту формулу высказываний. Поэтому формула алгебры логики является функцией входящих в нее элементарных высказываний.

Например, формула $(x\&y)\to \overline{z}$ является функцией трех переменных f(x,y,z). Особенностью этой функции является то обстоятельство, что ее аргументы принимают одно из двух значений: ноль или единицу, и при этом функция также принимает одно из двух значений: ноль или единицу.

Определение. Функцией алгебры логики n переменных (или функцией Буля) называется функция n переменных, где каждая переменная принимает два значения: 0 и 1, и при этом функция может принимать только одно из двух значений: 0 или 1.

Ясно, что тождественно истинные и тождественно ложные формулы алгебры логики представляют собой постоянные функции, а две равносильные формулы выражают одну и ту же функцию.

Выясним, каково число функций n переменных. Очевидно, каждую функцию алгебры логики (как и формулу алгебры логики) можно задать с помощью таблицы истинности, которая будет содержать 2^n строк. Следовательно, каждая функция n переменных принимает 2^n значений, состоящих из нулей и единиц. Таким образом, функция n переменных полностью определяется набором значений из нулей и единиц длины 2^n . Общее же число наборов, состоящих из нулей и единиц, длины 2^n равно 2^{2^n} . Значит, число различных функций алгебры логики n переменных равно 2^{2^n} .

В частности, различных функций одной переменной четыре, а различных функций двух переменных шестнадцать. Выпишем все функции алгебры логики одной и двух переменных

Рассмотрим таблицу истинности для различных функций одной переменной. Она, очевидно, имеет вид:

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
1	1	1	0	0
0	1	0	1	0

Из этой таблицы следует, что две функции одной переменной будут постоянными: $f_1\left(x\right)\equiv 1,\ f_4\left(x\right)\equiv 0,\ a\ f_2\left(x\right)\equiv x,\ u\ f_3\left(x\right)\equiv \overline{x}.$

Таблица истинности для всевозможных функций двух переменных имеет вид:

$$f_i \equiv f_i(x,y)$$

x	y	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
1	1	1	1	1	1	0	1	1	0	0	0	1	0	0	0	1	0
1	0	1	1	1	0	1	1	0	0	1	1	0	0	0	1	0	0
0	1	1	1	0	1	1	0	0	1	1	0	1	0	1	0	0	0
0	0	1	0	1	1	1	0	1	4	0	1	0	1	0	0	0	0

JIAHE

Ясно, что аналитические выражения этих функций могут быть записаны следующим образом:

$$f_{1} \equiv 1, \qquad f_{5} \equiv \overline{x \& y}, \qquad f_{9} \equiv \overline{x \leftrightarrow y}, \quad f_{13} \equiv \overline{y \to x},$$

$$f_{2} \equiv x \lor y, \qquad f_{6} \equiv x, \qquad f_{10} \equiv \overline{y}, \qquad f_{14} \equiv \overline{x \to y},$$

$$f_{3} \equiv y \to x, \quad f_{7} \equiv x \leftrightarrow y, \quad f_{11} \equiv y \qquad f_{15} \equiv x \& y,$$

$$f_{4} \equiv x \to y, \quad f_{8} \equiv \overline{x}, \qquad f_{12} \equiv \overline{x \lor y}, \quad f_{16} \equiv 0.$$

§ 8. ПРЕДСТАВЛЕНИЕ ПРОИЗВОЛЬНОЙ ФУНКЦИИ АЛГЕБРЫ ЛОГИКИ В ВИДЕ ФОРМУЛЫ АЛГЕБРЫ ЛОГИКИ

Пусть $F(x_1, x_2, \dots, x_n)$ — произвольная функция алгебры логики n переменных.

Рассмотрим формулу

$$F(1,1,...,1) \&x_1\&x_2\&...\&x_n \lor \lor F(1,1,...,1,0) \&x_1\&x_2\&...\&x_{n-1}\&\overline{x}_n \lor \lor F(1,1,...,1,0,1) \&x_1\&x_2\&...\&x_{n-2}\&\overline{x}_{n-1}\&x_n \lor \cdots \lor \lor F(0,0,...,0) &\overline{x}_1\&\overline{x}_2\&...\&\overline{x}_n,$$
(1)

которая составлена следующим образом: каждое слагаемое этой логической суммы представляет собой конъюнкцию, в которой первый член является значением функции F при некоторых определенных значениях переменных $x_1,\ x_2,\ \ldots,\ x_n,$ остальные же члены конъюнкции представляют собой переменные или их отрицания. При этом под знаком отрицания находятся те и только те переменные, которые в первом члене конъюнкции имеют значение 0.

Вместе с тем формула (1) содержит в виде логических слагаемых всевозможные конъюнкции указанного вида.

Ясно, что формула (1) полностью определяет функцию $F(x_1, x_2, \ldots, x_n)$. Иначе говоря, значения функции F и формулы (1) совпадают на всех наборах значений переменных x_1, x_2, \ldots, x_n .

Например, если x_1 принимает значение 0, а остальные переменные принимают значение 1, то функция F принимает значение $F(0,1,1,\ldots,1)$. При этом логическое слагаемое

 $F\left(0,1,\ldots,1\right)\&\overline{x}_{1}\&x_{2}\&\ldots\&x_{n}$, входящее в формулу (1), принимает также значение $F\left(0,1,\ldots,1\right)$, все остальные логические слагаемые формулы (1) имеют значение 0. Действительно, в них знаки отрицания над переменными распределяются иначе, чем в рассмотренном слагаемом, но тогда при замене переменных теми же значениями в конъюнкцию войдет символ 0 без знака отрицания, символ 1 под знаком отрицания. В таком случае один из членов конъюнкции имеет значение 0, а поэтому вся конъюнкция имеет значение 0. В связи с этим на основании равносильности $x\vee 0\equiv x$ значением формулы (1) является $F\left(0,1,\ldots,1\right)$.

Ясно, что вид формулы (1) может быть значительно упрощен, если в ней отбросить те логические слагаемые, в которых первый член конъюнкции имеет значение 0 (и, следовательно, вся конъюнкция имеет значение 0). Если же в логическом слагаемом первый член конъюнкции имеет значение 1, то, пользуясь равносильностью $1\&x\equiv x$, этот член конъюнкции можно не выписывать.

Таким образом, в результате получается формула (1), которая содержит только элементарные переменные высказывания и обладает следующими свойствами:

- 1) Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию $F(x_1,x_2,\ldots,x_n)$.
 - 2) Все логические слагаемые формулы различны.
- 3) Ни одно логическое слагаемое формулы не содержит одновременно переменную и ее отрицание.
- 4) Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.

Перечисленные свойства будем называть *свойствами совершенства* или, коротко, свойствами (C).

Из приведенных рассуждений видно, что каждой не тождественно ложной функции соответствует единственная формула указанного вида.

Если функция $F(x_1,x_2,x_3)$ задана таблицей истинности, то соответствующая ей формула алгебры логики может быть получена просто. Действительно, для каждого набора значений переменных, на котором функция $F(x_1,x_2,\ldots,x_n)$ принимает значение 1, запишем конъюнкцию элементарных переменных высказываний, взяв за член конъюнкции x_k , если

значение x_k на указанном наборе значений переменных есть 1, и отрицание x_k , если значение x_k есть 0. Дизъюнкция всех записанных конъюнкций и будет искомой формулой.

Пусть, например, функция $F\left(x_{1},x_{2},x_{3}\right)$ имеет следующую таблицу истинности:

x_1	x_2	x_3	$F\left(x_1, x_2, x_3\right)$
1	1	1	0
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

Для наборов значений переменных (1,1,0), (1,0,1), (0,1,0), (0,0,0), на которых функция принимает значение 1, запишем конъюнкции: $x_1\&x_2\&\overline{x_3}$, $x_1\&\overline{x_2}\&x_3$, $\overline{x_1}\&x_2\&\overline{x_3}$, $\overline{x_1}\&\overline{x_2}\&\overline{x_3}$, а искомая формула, обладающая свойствами (C), имеет вид:

$$x_1 \& x_2 \& \overline{x_3} \lor x_1 \& \overline{x_2} \& x_3 \lor \overline{x_1} \& x_2 \& \overline{x_3} \lor \overline{x_1} \& \overline{x_2} \& \overline{x_3}.$$

§ 9. ЗАКОН ДВОЙСТВЕННОСТИ

Пусть формула A содержит только операции конъюнкции, дизъюнкции и отрицания.

Будем называть операцию конъюнкции двойственной операции дизъюнкции, а операцию дизъюнкции двойственной операции конъюнкции.

Определение. Формулы A и A^* называются ∂s ойственными, если формула A^* получается из формулы A путем замены в ней каждой операции на двойственную.

Например, для формулы $A \equiv (x \lor y) \& z$ двойственной формулой будет формула $A^* \equiv (x \& y) \lor z$.

29

Теорема. Если формулы A и B равносильны, то равносильны и им двойственные формулы, то есть $A^* \equiv B^*$.

Предварительно докажем лемму.

Лемма. Если для формулы $A(x_1,x_2,\ldots,x_n)$ двойственной формулой является $A^*(x_1,x_2,\ldots,x_n)$, то справедливаравносильность

$$\overline{A(x_1, x_2, \dots, x_n)} \equiv A^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n).$$

Доказательство. Для элементарной формулы утверждение леммы очевидно. Действительно, если $A(x_1) \equiv x_1$, то $A^*(x_1) \equiv x_1$, $\overline{A}(x_1) \equiv \overline{x}_1$, $A^*(\overline{x}_1) \equiv \overline{x}_1$ и $\overline{A}(x_1) \equiv A^*(\overline{x}_1)$.

Пусть теперь утверждение леммы справедливо для всяких формул, содержащих не более k операций. Докажем, что при этом предположении утверждение справедливо и для формулы, содержащей и k+1 операцию.

Пусть формула $A(x_1, x_2, \ldots, x_n)$ содержит k+1 операцию. Тогда ее можно представить в одном из трех видов:

- 1) $A(x_1, x_2, ..., x_n) \equiv \overline{A_1(x_1, x_2, ..., x_n)}$
- 2) $A(x_1, x_2, ..., x_n) \equiv A_1(x_1, x_2, ..., x_n) \vee A_2(x_1, x_2, ..., x_n)$,
- 3) $A(x_1,x_2,\ldots,x_n)\equiv A_1(x_1,x_2,\ldots,x_n)\&A_2(x_1,x_2,\ldots,x_n)$, где формулы $A_1(x_1,x_2,\ldots,x_n)$ и $A_2(x_1,x_2,\ldots,x_n)$ содержат не более k операций, и, следовательно, для них утверждение справедливо, то есть

$$\overline{A_1(x_1, x_2, \dots, x_n)} \equiv A_1^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n),
\overline{A_2(x_1, x_2, \dots, x_n)} \equiv A_2^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n).$$

TAHE

В случае 1) имеем $A^* \equiv \overline{A}_1^*$, поэтому

$$\overline{A\left(x_{1}, x_{2}, \dots, x_{n}\right)} \equiv \overline{A_{1}\left(x_{1}, x_{2}, \dots, x_{n}\right)} \equiv$$

$$\equiv \overline{A_{1}^{*}\left(\overline{x}_{1}, \overline{x}_{2}, \dots, \overline{x}_{n}\right)} \equiv A^{*}\left(\overline{x}_{1}, \overline{x}_{2}, \dots, \overline{x}_{n}\right).$$

В случае 2) имеем $A^* \equiv \left(A_1 \vee A_2\right)^* \equiv A_1^* \& A_2^*$, а поэтому

$$\overline{A(x_1, x_2, \dots, x_n)} \equiv \overline{A_1(x_1, x_2, \dots, x_n)} \vee A_2(x_1, x_2, \dots, x_n) \equiv
\equiv \overline{A_1(x_1, x_2, \dots, x_n)} \& \overline{A_2(x_1, x_2, \dots, x_n)} \equiv
\equiv A_1^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n) \& A_2^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n) \equiv A^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n).$$

Аналогичное доказательство проводится и в случае 3). Докажем теперь закон двойственности.

Пусть формулы $A(x_1, x_2, \dots, x_n)$ и $B(x_1, x_2, \dots, x_n)$ равносильны:

$$A(x_1, x_2, ..., x_n) \equiv B(x_1, x_2, ..., x_n)$$
.

Но тогда, очевидно,

$$\overline{A(x_1, x_2, \dots, x_n)} \equiv \overline{B(x_1, x_2, \dots, x_n)}.$$
 (1)

В то же время, согласно лемме,

$$\begin{cases}
\overline{A(x_1, x_2, \dots, x_n)} \equiv A^* (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n), \\
\overline{B(x_1, x_2, \dots, x_n)} \equiv B^* (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n).
\end{cases}$$
(2)

Из равносильностей (1) и (2) получаем

$$A^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n) \equiv B^*(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n),$$

и, следовательно,

$$A^*(x_1, x_2, \dots, x_n) \equiv A^*(x_1, x_2, \dots, x_n).$$

§ 10. ДИЗЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА И СОВЕРШЕННАЯ ДИЗЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА (ДНФ И СДНФ)

Определение 1. Элементарной конъюнкцией п переменных называется конъюнкция переменных или их отрицаний.

Элементарная конъюнкция n переменных может быть записана в виде:

$$x_1^{\delta_1} \& x_2^{\delta_2} \& \dots \& x_n^{\delta_n},$$

где
$$x_k^{\delta_k} = \begin{cases} x_k, & \text{если} & \delta_k = 1, \\ \overline{x}_k, & \text{если} & \delta_k = 0. \end{cases}$$

Определение 2. Дизъюнктивной нормальной формой $(ДН\Phi)$ формулы A называется равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций.

Для любой формулы алгебры логики путем равносильных преобразований можно получить ее $ДН\Phi$, причем не единственную.

Например, для формулы $A \equiv x \& (x \to y)$ имеем:

$$A\equiv x\&\ (\overline{x}\vee y)\equiv (x\&\overline{x})\vee (x\&y)\equiv x\&y,\qquad \text{ то есть}$$
 ДНФ $A\equiv (x\&\overline{x})\vee (x\&y)$,
 ДНФ $A\equiv x\&y$.

Среди многочисленных ДНФ A существует единственная ДНФ A, для которой выполняются перечисленные выше четыре свойства совершенства (свойства (C)).

Такая ДНФ A называется совершенной дизъюнктивной нормальной формой формулы A (СДНФ A).

Как уже указывалось, СДНФ A может быть получена с помощью таблицы истинности.

Другой способ получения СДНФ формулы A основан на равносильных преобразованиях формулы и состоит в следующем:

- 1. Путем равносильных преобразований формулы A получают одну из ДНФ A.
- 2. Если в полученной ДНФ A входящая в нее элементарная конъюнкция B не содержит переменную x_i , то, используя равносильность $B\&\ (x_i \lor \overline{x}_i) \equiv B$, элементарную конъюнкцию B заменяют на две элементарных конъюнкции $(B\&x_i)$ и $(B\&\overline{x}_i)$, каждая из которых содержит переменную x_i .
- 3. Если в ДНФ A входят две одинаковых элементарных конъюнкции B, то лишнюю можно отбросить, пользуясь равносильностью $B \lor B \equiv B$.
- 4. Если некоторая элементарная конъюнкция B, входящая в ДНФ A, содержит переменную x_i и ее отрицание \overline{x}_i , то $B\equiv 0$, и B можно исключить из ДНФ A как нулевой член дизъюнкции.
- 5. Если некоторая элементарная конъюнкция, входящая в ДНФ A, содержит переменную x_i дважды, то одну переменную можно отбросить, пользуясь равносильностью $x_i \& x_i \equiv x_i$.

Ясно, что после выполнения описанной процедуры будет получена СДНФ A.

Например, для формулы $A \equiv x \vee y \& (x \vee \overline{y})$ ДНФ $A \equiv x \vee x \& y \vee y \& \overline{y}$.

Так как элементарная конъюнкция $B \equiv x$, входящая в ДНФ A, не содержит переменной y, то, пользуясь равносильностью $B \equiv B\&\ (y \lor \overline{y}) \equiv x\&\ (y \lor \overline{y}) \equiv x\&\ y \lor x\&\overline{y}$, заменим ее на две элементарных конъюнкции x&y и $x\&\overline{y}$. В результате получим ДНФ $A \equiv x\&y \lor x\&\overline{y} \lor x\&y \lor y\&\overline{y}$.

Так как теперь ДНФ A содержит две одинаковых элементарных конъюнкции x&y, то лишнюю отбросим, пользуясь равносильностью $x\&y \lor x\&y \equiv x\&y$. В результате получим ДНФ $A \equiv x\&y \lor x\&\overline{y} \lor y\&\overline{y}$.

Так как элементарная конъюнкция $y\&\overline{y}$ содержит переменную y и ее отрицание \overline{y} , то $y\&\overline{y}\equiv 0$, и ее можно отбросить как нулевой член дизъюнкции.

Таким образом, получаем

СДНФ
$$A \equiv x \& y \lor x \& \overline{y}$$
.

11. КОНЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА И СОВЕРШЕННАЯ КОНЪЮНКТИВНАЯ НОРМАЛЬНАЯ ФОРМА (КНФ И СКНФ)

Определение 1. Элементарной дизъюнкцией n переменных называется дизъюнкция переменных или их отрицаний.

Элементарная дизъюнкция n переменных может быть записана в виде:

$$x_1^{\delta_1} \vee x_2^{\delta_2} \vee \dots \vee x_n^{\delta_n},$$

где
$$x_k^{\delta_k} = \begin{cases} x_k, & \text{если} & \delta_k = 1, \\ \overline{x}_k, & \text{если} & \delta_k = 0. \end{cases}$$

Определение 2. Конъюнктивной нормальной формой $(KH\Phi)$ формулы A называется равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций.

Для любой формулы алгебры логики путем равносильных преобразований можно получить ее $KH\Phi$, причем не единственную.

Алгебра логики 33

Например, для формулы $A \equiv \overline{x \lor y} \leftrightarrow x \& y$ имеем:

$$A \equiv (\overline{x \vee y} \to x \& y) \& (x \& y \to \overline{x \vee y}) \equiv \\ \equiv (x \vee y \vee x \& y) \& (\overline{x \& y} \vee \overline{x \vee y}) \equiv$$

 $\equiv (x \lor x \lor y) \& (x \lor y \lor y) \& (\overline{x} \lor \overline{y} \lor \overline{x}) \& (\overline{x} \lor \overline{y} \lor \overline{y}) , \quad \text{то есть}$ КНФ $A \equiv (x \lor x \lor y) \& (x \lor y \lor y) \& (\overline{x} \lor \overline{y} \lor \overline{x}) \& (\overline{x} \lor \overline{y} \lor \overline{y}) .$

Ho так как $x \lor x \equiv x, \ y \lor y \equiv y, \ \overline{x} \lor \overline{x} \equiv \overline{x}, \ \overline{y} \lor \overline{y} \equiv \overline{y}, \ \text{то}$ КНФ $A \equiv (x \lor y) \& (x \lor y) \& (\overline{x} \lor \overline{y}) \& (\overline{x} \lor \overline{y}).$

А так как $(x \lor y) \& (x \lor y) \equiv (x \lor y), (\overline{x} \lor \overline{y}) \& (\overline{x} \lor \overline{y}) \equiv (\overline{x} \lor \overline{y}),$ то КНФ $A \equiv (x \lor y) \& (\overline{x} \lor \overline{y}).$

Определение 3. КНФ A называется совершенной конъюнктивной нормальной формой формулы A (СКНФ A), если для нее выполнены условия:

- 1. Все элементарные дизъюнкции, входящие в КНФ A, содержат все переменные.
- 2. Все элементарные дизъюнкции, входящие в КНФ A, различны.
- 3. Каждая элементарная дизъюнкция, входящая в КНФ A, не содержит переменную и ее отрицание.
- 4. Каждая элементарная дизъюнкция, входящая в КНФ A, не содержит двух одинаковых переменных.

Можно доказать, что каждая не тождественно истинная формула имеет единственную СКНФ.

Один их способов получения СКН Φ состоит в использовании таблицы истинности для формулы \overline{A} .

Действительно, получив с помощью таблицы истинности СДНФ \overline{A} , мы получим СКНФ A, взяв отрицание $\overline{CДНФ}$ $\overline{\overline{A}}$, то есть СКНФ $A \equiv \overline{CДНФ}$ $\overline{\overline{A}}$.

Другой способ получения СКНФ, использующий равносильные преобразования, состоит в следующем:

- 1. Путем равносильных преобразований формулы A получают одну из КНФ A.
- 2. Если в полученной КНФ A входящая в нее элементарная дизъюнкция B не содержит переменную x_i , то, используя равносильность $B \lor (x_i \& \overline{x}_i) \equiv B$, элементарную дизъюнкцию B заменяют на две элементарные дизъюнкции $B \lor x_i$ и $B \lor \overline{x}_i$, каждая из которых содержит переменную x_i .

- 3. Если в КН Φ A входят две одинаковых элементарных дизъюнкции B, то лишнюю можно отбросить, пользуясь равносильностью $B\&B\equiv B$.
- 4. Если некоторая элементарная дизъюнкция, входящая в КНФ A, содержит переменную x_i и ее отрицание, то $x_i \vee \overline{x}_i \equiv 1$ и, следовательно, вся элементарная дизъюнкция имеет значение 1, а поэтому ее можно отбросить как единичный член конъюнкции.
- 5. Если некоторая элементарная дизъюнкция, входящая в КНФ A, содержит переменную x_i дважды, то лишнюю можно отбросить, пользуясь равносильностью $x_i \lor x_i \equiv x_i$.

Ясно, что после описанной процедуры будет получена СКНФ A.

Например, для формулы $A\equiv x\vee\&(x\vee\overline{y})$ КНФ $A\equiv \equiv (x\vee y)\&(x\vee x\vee\overline{y}).$

Так как обе элементарные дизъюнкции различны и содержат все переменные $(x \ u \ y)$, то первое и второе условия СКНФ A выполнены.

Элементарная дизъюнкция $x \lor x \lor \overline{y}$ содержит переменную x дважды, но $x \lor x \equiv x$, и поэтому КНФ $A \equiv (x \lor \overline{y}) \& (x \lor y)$; причем ни одна из элементарных дизъюнкций не содержит переменную и ее отрицание. Значит, теперь выполнены все условия СКНФ A, и, следовательно, СКНФ $A \equiv (x \lor \overline{y}) \& (x \lor y)$.

§ 12. ПРОБЛЕМА РАЗРЕШИМОСТИ

Все формулы алгебры логики делятся на три класса:

- 1) тождественно истинные,
- 2) тождественно ложные и
- 3) выполнимые.

Определения тождественно истинной и тождественно ложной формул даны выше.

Формулу A называют выполнимой, если она принимает значение «истина» хотя бы на одном наборе значений входящих в нее переменных и не является тождественно истинной.

В связи с этим возникает задача: к какому классу относится данная формула?

Эта задача носит название проблемы разрешимости.

Очевидно, проблема разрешимости алгебры логики разрешима.

Действительно, для каждой формулы алгебры логики может быть записана таблица истинности, которая и даст ответ на поставленный вопрос.

Однако практическое использование таблицы истинности для формулы $A\left(x_{1},x_{2},\ldots,x_{n}\right)$ при больших n затруднительно.

Существует другой способ, позволяющий, не используя таблицы истинности, определить, к какому классу относится формула A. Этот способ основан на приведении формулы к нормальной форме (КНФ или ДНФ) и использовании алгоритма, который позволяет определить, является ли данная формула тождественно истинной или не является. Одновременно с этим решается вопрос о том, будет ли формула A выполнимой

Предположим, что мы имеем критерий тождественной истинности для формул алгебры логики. Рассмотрим механизм его применения.

Применим критерий тождественной истинности к формуле A. Если окажется, что формула A — тождественно истинная, то задача решена. Если же окажется, что формула A не тождественно истинная, то применим критерий тождественной истинности к формуле \overline{A} . Если окажется, что формула \overline{A} — тождественно истинная, то ясно, что формула \overline{A} — тождественно ложная, и задача решена. Если же формула \overline{A} не тождественно истинная, то остается единственно возможный результат: формула A выполнима.

Установим теперь критерий тождественной истинности произвольной формулы алгебры логики. С этой целью предварительно сформулируем и докажем критерий тождественной истинности элементарной дизъюнкции.

Теорема 1. Для того, чтобы элементарная дизъюнкция была тождественно истинной, необходимо и достаточно, чтобы в ней содержалась переменная и ее отрицание.

Доказательство. *Необходимость*. Пусть элементарная дизъюнкция тождественно истинна, но в нее одновременно не входит некоторая переменная и ее отрицание. Придадим каждой переменной, входящей в элементарную дизъюнкцию

без знака отрицания, значение «ложь», а каждой переменной, входящей в элементарную дизъюнкцию под знаком отрицания — значение «истина». Тогда, очевидно, вся элементарная дизъюнкция примет значение «ложь», что противоречит условию.

Достаточность. Пусть теперь элементарная дизъюнкция содержит переменную и ее отрицание. Так как $x_i \vee \overline{x}_i \equiv 1$, то и вся элементарная дизъюнкция будет тождественно истинной.

Критерий тождественной истинности элементарной дизъюнкции позволяет сформулировать и доказать критерий тождественной истинности произвольной формулы алгебры логики.

Теорема 2. Для того, чтобы формула алгебры логики A была тождественно истинна, необходимо и достаточно, чтобы любая элементарная дизъюнкция, входящая в $KH\Phi$ A, содержала переменную и ее отрицание.

Доказательство. Необходимость. Пусть A тождественно истинна. Тогда и КНФ A — тождественно истинна. Но КНФ $A \equiv A_1 \& A_2 \& \dots \& A_n$, где A_i — элементарные дизъюнкции $(i=1,2,\dots,n)$. Так как КНФ $A\equiv 1$, то $A_i\equiv 1$ $(i=1,2,\dots,n)$. Но тогда по теореме 1 каждая элементарная дизъюнкция A_i содержит переменную и ее отрицание.

Достаточность. Пусть любая элементарная дизъюнкция A_i , входящая в КНФ A, содержит переменную и ее отрицание. Тогда по теореме 1 $A_i \equiv 1\,(i=1,2,\ldots,n)$. При этом и КНФ $A\equiv 1$.

Например, выясним, является ли формула $A\equiv y\vee \overline{y}\&x\vee \sqrt{x}\&\overline{y}$ тождественно истинной.

Так как $A\equiv y\vee \overline{y}\& (x\vee \overline{x})\equiv (y\vee \overline{y})\& (y\vee x\vee \overline{x})$, то ясно, что каждая элементарная дизъюнкция $y\vee \overline{y}$ и $y\vee x\vee \overline{x}$, входящая в КНФ A, содержит переменную и ее отрицание. Следовательно, $A\equiv 1$.

Аналогично можно установить критерий тождественной ложности формулы алгебры логики, используя ее ДНФ.

Теорема 3. Для того, чтобы элементарная конъюнкция была тождественно ложной, необходимо и достаточно, чтобы в ней содержалась переменная и ее отрицание.

Теорема 4. Для того, чтобы формула алгебры логики A была тождественно ложной, необходимо и достаточно, чтобы любая конъюнкция, входящая в ДНФ A, содержала переменную и ее отрицание.

§ 13. НЕКОТОРЫЕ ПРИЛОЖЕНИЯ АЛГЕБРЫ ЛОГИКИ

1. Приложения алгебры логики в технике (релейно-контактные схемы).

Среди технических средств автоматизации значительное место занимают устройства релейно-контактного действия. Они широко используются в технике автоматического управления, в электронно-вычислительной технике и т. д.

Эти устройства (их в общем случае называют переключательными схемами) содержат сотни реле, электронных ламп, полупроводников и электромагнитных элементов. Описание и конструирование таких схем в силу их громоздкости весьма затруднительно.

Еще в 1910 году физик П. С. Эренфест указал на возможность применения аппарата алгебры логики при исследовании релейно-контактных схем (РКС). Однако его идеи стали реализовываться значительно позже, когда создание общей теории конструирования РКС стало остро необходимым.

Использование алгебры логики в конструировании РКС оказалось возможным в связи с тем, что каждой схеме можно поставить в соответствие некоторую формулу алгебры логики, и каждая формула алгебры логики реализуется с помощью некоторой схемы.

Это обстоятельство позволяет выявить возможности заданной схемы, изучая соответствующую формулу, а упрощение схемы свести к упрощению формулы.

С другой стороны, до построения схемы можно заранее описать с помощью формулы те функции, которые схема должна выполнять.

Рассмотрим, как устанавливается связь между формулами алгебры логики и переключательными схемами.

Под переключательной схемой понимают схематическое изображение некоторого устройства, состоящего из следующих элементов:

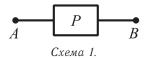
- 1) переключателей, которыми могут быть механические действующие устройства (выключатели, переключающие ключи, кнопочные устройства и т.д.), электромагнитные реле, электронные лампы, полупроводниковые элементы и т.п.;
 - 2) соединяющих их проводников;
- 3) входов в схему и выходов из нее (клемм, на которые подается электрическое напряжение). Они называются полюсами схемы.

Сопротивления, конденсаторы и т. д. на схемах не изображаются.

Переключательной схемой принимается в расчет только два состояния каждого переключателя, которые называют «замкнутым» и «разомкнутым».

Рассмотрим простейшую схему, содержащую один переключатель P и имеющую один вход A и один выход B. Переключателю P поставим в соответствие высказывание p, гласящее: «Переключатель P замкнут». Если p истинно, то импульс, поступающий на полюс A, может быть снят на полюсе B без потери напряжения. Будем в этом случае говорить, что схема проводит ток. Если p ложно, то переключатель разомкнут, и схема тока не проводит или на полюсе B снимается минимальное напряжение при подаче на полюс A максимального напряжения.

Если принять во внимание не смысл высказывания, а только его значение, то можно считать, что любому высказыванию может быть поставлена в соответствие переключательная схема 1



Формулам, включающим основные логические операции, также могут быть поставлены в соответствие переключательные схемы.

Конъюнкция двух высказываний p и q будет представлена двухполюсной схемой с последовательным соединением двух переключателей P и Q (схема 2).