3.8. С какой силой F_S на единицу площади отталкиваются две одноименно заряженные бесконечно протяженные плоскости? Поверхностная плотность заряда $\sigma = 0.3 \text{ мКл/м}^2$.

$$[F_S = 5,1 \text{ H/m}]$$

3.9. Два одинаково заряженных шарика диаметрами d=0.5 см каждый расположены на расстоянии l=2 см между их поверхностями. До какого потенциала ϕ они заряжены, если сила их отталкивания друг от друга F=2 мкH? Среда — воздух.

$$[\phi = 1340 \text{ B}]$$

3.10. Между вертикальными разноименно заряженными пластинами помещена палочка длиной l=2 см, изготовленная из диэлектрика. На ее концах находятся точечные заряды $q_1=-1$ мкКл и $q_2=+1$ мкКл. Разность потенциалов между пластинами U=2 В, расстояние между ними d=4 см. Какую работу нужно совершить, чтобы повернуть эту палочку на угол $\alpha=180^\circ$ вокруг вертикальной оси, проходящей через ее центр?

$$[A = -1 \text{ мкДж}]$$

3.11. Два шара, заряженные одинаково имеют потенциал $\varphi_1 = 10$ В и $\varphi_2 = 40$ В. Найти потенциал φ этих проводников после их соприкосновения друг с другом.

$$[\phi = 16 \text{ B}]$$

4. ДВИЖЕНИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

4.1. Примеры решения задач

Задача 1. Электрон влетает в однородное электрическое поле со скоростью υ_0 , направленной перпендикулярно вектору напряженности \vec{E} . Под каким углом φ к линиям вектора напряженности будет направлен вектор его скорости через время t полета в поле? Чему будет равна работа сил поля A за это время? Чему будет равна кинетическая энергия электрона W_{κ} через время t? Напряженность поля E, масса электрона m_e и его заряд известны (рис. 4.1).

Анализ и решение.

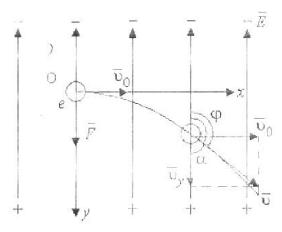


Рис. 4.1

Движение электрона, влетевшего в поле перпендикулярном линиям вектора \vec{E} представляет собой суперпозицию двух движений, равномерного и прямолинейного в направлении вектора начальной скорости \vec{v}_0 (на электрон в этом направлении никакие силы не действуют), а также равноускоренного вниз под действием электрической силы \vec{F} . Движение по параболе. Проекция его начальной скорости на ось $\hat{O}y$:

$$\upsilon = \sqrt{\upsilon_0^2 + \upsilon_y^2}.$$

$$\upsilon_y = \upsilon_{0y} + at \rightarrow \upsilon_y = at (\upsilon_{0y} = 0),$$

$$a = \frac{F}{m_e} = \frac{eE}{m_e} \rightarrow \upsilon_y = \frac{eE}{m_e}t,$$

$$2 (eEt)^2$$

подставим в (1)

$$\upsilon = \sqrt{\upsilon_0^2 + \left(\frac{eEt}{m_e}\right)^2},$$

$$W_{\rm K} = \frac{m_e}{2} \left[\upsilon_0^2 + \left(\frac{eEt}{m_e}\right)^2\right].$$

$$tg\alpha = \frac{\upsilon_0}{\upsilon_y} \to tg\alpha = \frac{\upsilon_0 m_e}{eEt} \to \alpha = agctg\left(\frac{m\upsilon_0}{eEt}\right).$$

$$\varphi = 180^\circ - \alpha \text{ , T.e. } \varphi = 180^\circ - arctg\left(\frac{m\upsilon_0}{eEt}\right).$$

$$A = W_{\rm K} - W_{\rm KO}, \ \Gamma \not \exists e \ W_{\rm KO} = \frac{m_e\upsilon_0^2}{2},$$

$$A = W_{\rm K} - \frac{m_e\upsilon_0^2}{2}.$$

Задача 2. В однородном электрическом поле напряженностью E=2 кВ/см переместили заряд q=-20 нКл в направлении силовой линии поля на расстояние d=10 см. Найти работу поля A, изменение

потенциальной энергии поля ΔW_{Π} и напряжение (разность потенциалов) U между начальной и конечной точками перемещения.

Анализ и решение.

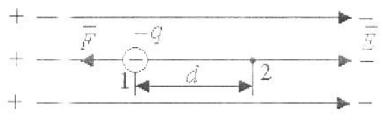


Рис. 4.2

Со стороны поля на отрицательный заряд будет действовать постоянная сила $\vec{F} = q\vec{e}$, антипараллельная его перемещению из точки 1 в точку 2:

$$A = Fd\cos\alpha,$$

где $\alpha = 180^{\circ}$, $\cos \alpha = -1$.

Следовательно

$$\begin{split} A &= -qed \ . \\ A &= -\Delta W_{_\Pi} \to \Delta W_{_\Pi} = -A \to \Delta W_{_\Pi} = qed \ , \\ A &= qU \to U = \frac{A}{q} \ . \\ A &= -2 \cdot 10^{-8} \cdot 2 \cdot 10^5 \cdot 0, 1 = -4 \cdot 10^{-4} \quad \text{Дж.} \\ \Delta W_{_\Pi} &= 4 \cdot 10^{-4} \quad \text{Дж.} \\ U &= \frac{-4 \cdot 10^{-4}}{-2 \cdot 10^{-8}} = 2 \cdot 10^4 \quad \text{B.} \end{split}$$

Задача 3. В плоский конденсатор влетает электрон со скоростью $\upsilon_0 = 2\cdot 10^6\,$ м/с, направленной параллельно обкладкам конденсатора. На какое расстояние h сместится электрон к нижней обкладке за время пролета конденсатора? Расстояние между обкладками конденсатора $d=2\,$ см, длина конденсатора $l=5\,$ см, разность потенциалов между обкладками $U=2\,$ В.

Анализ и решение.

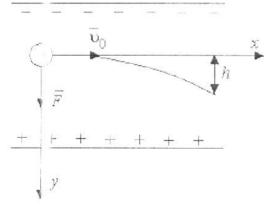


Рис. 4.3

При влете электрона в заряженный конденсатор на него со стороны поля конденсатора сразу начинает действовать постоянная сила $\vec{F} = m_e \vec{a}$, направленная в сторону положительной обкладки конденсатора, перпендикулярной первоначальному направлению движения электрона

$$h=\frac{at^2}{2},$$

так как $v_{0y} = 0$.

$$l = v_0 t,$$

$$t = \frac{l}{v_0} \to h = \frac{a}{2v_0^2} l^2$$

движение по параболе

$$E = \frac{F}{e} \to F = eE; E = \frac{U}{d} \to F = e\frac{U}{d},$$

$$a = \frac{eU}{m_e d} \to h = \frac{eUl^2}{2m_e dv_0^2} = \frac{eU}{2m_e d} \left(\frac{l}{v_0}\right)^2;$$

$$h = \frac{1,6 \cdot 10^{-19} \cdot 2}{2 \cdot 9,1 \cdot 10^{-31} \cdot 0,02} \left(\frac{0,05}{2 \cdot 10^6}\right)^2 = 5,5 \cdot 10^{-3} \text{ M}.$$

4.1. Задачи для самостоятельного решения

4.1. В однородном поле напряженностью E=20 кВ/м переместили заряд q=2 нКл под углом $\alpha=30^\circ$ к направлению силовых линий поля. Модуль перемещения $|\Delta \vec{r}|=80$ см. Найти работу поля A, изменение потенциальной энергии взаимодействия заряда с полем $\Delta W_{\scriptscriptstyle \Pi}$ и напряжение U между начальной и конечной точками перемещения.

$$[A = qE|\Delta \vec{r}|\cos \alpha = 2,7 \cdot 10^{-5} \text{ Дж}, \Delta W_{\Pi} = -2,7 \cdot 10^{-5} \text{ Дж},$$
 $U = E|\Delta \vec{r}|\cos \alpha = 1,4 \cdot 10^{4} \text{ B}$

4.2. Какую разность потенциалов $\varphi_1 - \varphi_2$ должен пролететь электрон по силовой линии, чтобы его скорость увеличилась в 5 раз, если его начальная скорость $\upsilon_0 = 1$ мм/с?

$$\left[\varphi_1 - \varphi_2 = 12 \frac{m_e v_0^2}{e} \right]$$

4.3. При радиоактивном распаде из ядра атома полония вылетает α -частица со скоростью $\upsilon=1,6\cdot 10^8$ см/с. Найти разность потенциалов и поля, в котором можно разогнать покоящуюся α -частицу $m=6,65\cdot 10^{-27}$ кг, ее заряд равен 2e, где $e=1,6\cdot 10^{-19}$ Кл (элементарный заряд).

$$\left[U = \frac{mv^2}{4e}\right]$$

4.4. Электрон вылетает со скоростью $\upsilon = 10$ м/с, параллельной пластинам плоского горизонтально расположенного конденсатора.