7. ПРАВИЛА КИРХГОФА ДЛЯ РАЗВЕТВЛЕННЫХ ЦЕПЕЙ

7.1. Основные формулы

I алгебраическая сумма сил токов, сходящихся в любом узле, равны нулю, т.е.

$$\sum I_i = 0$$
.

II для любого замкнутого контура алгебраическая сумма произведений сил токов на сопротивление соответствующих участков цепи равна алгебраической сумме всех ЭДС, действующих в этом контуре:

$$\sum IR = \sum \varepsilon_i$$
.

Порядок решения задач:

- 1) обозначить токи на всех участках;
- 2) выбрав направление обхода, составить уравнение по II правилу Кирхгофа, причем IR берется с «+», если направление I совпадает по направлению с обходом контура и наоборот. ε берется с «+», если стороннее поле совпадает по направлению с обходом и «-», если наоборот;
 - 3) составить уравнения по І правилу Кирхгофа.

7.2. Примеры решения задач

Задача 1. Батарея имеет ЭДС $\varepsilon_1 = 2$ В и $\varepsilon_2 = 3$ В, сопротивление $R_1 = 1$ кОм, $R_2 = 0.5$ кОм и $R_3 = 0.2$ кОм, сопротивление амперметра $R_A = 0.2$ кОм. Найти показание амперметра (рис. 7.1).

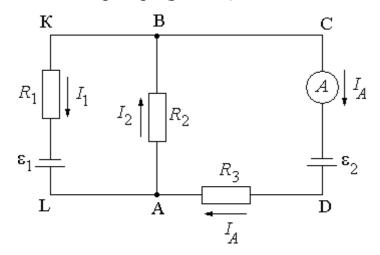


Рис. 7.1

Анализ и решение. Выберем и рассмотрим два контура: KLAB и BCDA. Для контура KLAB выберем направление обхода против часовой стрелки, а для контура ABCD — по часовой стрелке. Тогда по II правилу Кирхгофа:

$$I_1 R_2 + I_2 R_1 = \varepsilon_1$$
,
 $I_A (R_A + R_3) + I_2 R_1 = \varepsilon_2$.

По І правилу Кирхгофа для узла А:

$$I_2 = I_1 + I_A$$
.

Решаем систему из 3-х уравнений:

$$\begin{split} I_2 &= \frac{\varepsilon_2 - I_A (R_A + R_3)}{R_1} \,, \\ I_1 &= \frac{\varepsilon_1 - I_2 \, R_1}{R_2} = \frac{\varepsilon_1 - \varepsilon_2 + I_A (R_A + R_3)}{R_2} \,, \\ \frac{\varepsilon_2 - I_A (R_A + R_3)}{R_1} &= \frac{\varepsilon_1 - \varepsilon_2 + I_A (R_A + R_3)}{R_2} + I_A \,, \\ \frac{1 - 400 I_A}{1000} &= \frac{1 + 400 I_A}{500} + I_A \,, \\ 1 - 400 I_A &= 2 + 800 I_A + 1000 I_A \,, \\ - 2200 I_A &= 1 \qquad I_A = -\frac{1}{2200} = -0,45 \,\,\mathrm{mA}. \end{split}$$

Знак «—» показывает, что направление тока I_A противоположно направлению, указанному на рисунке.

Задача 2. В схеме представленной на рисунке $\varepsilon 1 = 2.1$ В, $\varepsilon 2 = 1.9$ В, R1 = 45 Ом, R2 = 10 Ом, R3 = 10 Ом. Найти силу тока во всех участках цепи. Внутренним сопротивлением элементов пренебречь.

A ε_1 B B ε_2 ε_2 ε_3 ε_4 ε_5 ε_6 ε_8 ε_8

Анализ и решение.

Применим правила Кирхгофа для данной разветвленной цепи. Наметим направления токов стрелками на схеме.

Для узла С: $I_3 = I_1 + I_2$.

Для Узла А получим тождественное уравнение.

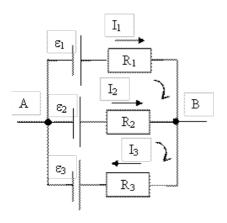
Для контура ABC по второму правилу Кирхгофа: $I_3R_3 + I_1R_3 = \mathbf{\mathcal{E}}_1$.

Для контура ACD: $I_1R_1 + I_2R_2 = \mathcal{E}_2$.

(Вместо контура ACD или ABC можно было бы взять контур ABCD)

Имеем три уравнения с тремя неизвестными, т.е. система разрешима:

$$\begin{cases} I_3 = I_1 + I_2 \\ 10I_3 + 45I_1 = 2,1 \\ 45I_1 - 10I_2 = 1,9 \end{cases}$$

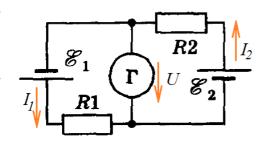

решая эту систему, получим: $I_1 = 0.04$ A; $I_2 = -0.01$ A; $I_3 = 0.03$ A.

Отрицательный знак у тока I_2 указывает на то, что направление было выбрано неверно. Направление тока I_2 в действительности будет идти от D к C, а не наоборот, как это было принято перед составлением уравнений.

Otbet:
$$I_1 = 0.04 \text{ A}$$
; $I_2 = -0.01 \text{ A}$; $I_3 = 0.03 \text{ A}$.

Задача 3. Три источника тока с ЭДС $\varepsilon 1 = 11$ В, $\varepsilon 2 = 4$ В и $\varepsilon 3 = 6$ В и три реостата с сопротивлениями R1 = 5 Ом, R2 = 10 Ом, R3 = 20 Ом соединены как показано на схеме. Определить силы токов I в реостатах. Внутреннее сопротивление источника пренебрежимо мало.

Анализ и решение. Воспользуемся правилами Кирхгофа. Выберем произвольные направления токов. И направление обхода контуров по часовой стрелке.



Составим систему уравнений:

$$\begin{cases} -I_1 - I_2 + I_3 = 0 \\ I_1 R_1 - I_2 R_2 = \varepsilon_1 - \varepsilon_2 \\ I_2 R_2 + I_3 R_3 = \varepsilon_2 - \varepsilon_1 \end{cases} \begin{cases} I_1 + I_2 = I_3 \\ 5I_1 - 10I_2 = 7 \\ 10I_2 + 2I_3 = -2 \end{cases}$$

$$I_1 = \frac{7}{5} + 2I_2 I_3 = -1 - 5I_2 I_3 = I_1 + I_2 - 1 - 5I_2 = I_1 + I_2$$

$$I_1 = -1 - 6I_2$$

Приравняем:
$$\frac{7}{5} + 2I_2 = -1 - 6I_2$$

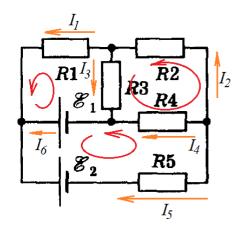
Приравняем: $I_2 = -0.3A$ «—» — направление тока $I_1 = \frac{7}{5} - 2 \cdot 0.3 = 0.8A$ $I_3 = 0.8 - 0.3 = 0.5A$
Ответ: $I_1 = 0.8A$ $I_2 = -0.3A$ $I_3 = 0.5A$

Задача 4. В схеме, показанной на рисунке, найти силу тока через гальванометр, если $\varepsilon 1 = 1.5$ B, R1 = 3 кОм; $\varepsilon 2 = 3$ B, R2 = 6 кОм. Сопротивлением гальванометра пренебречь.

Анализ и решение. Нам неизвестно сопротивление гальванометра, запишем для напряжения на нем два уравнения:

$$U = E_1 - I_1 R_1$$
$$U = E_2 - I_2 R_2$$

Приравнивая, получим


$$E_1 - I_1 R_1 = E_2 - I_2 R_2$$

Заметим, что, если $I_1 = I_2$, то равенство будет выполнено. Таким образом, ток через гальванометр не течет.

Ответ: I=0 A.

Задача 5. В цепи $\varepsilon 1$ =65 В, $\varepsilon 2$ = 39В, R1=20 Ом, R2= R3= R4=R5=10 Ом. Найти распределение токов в цепи. Внутреннее сопротивление источников тока не учитывать.

Анализ и решение. Обозначаем токи в ветвях произвольно, выбираем направления обходов контуров и сами контуры. Составляем систему уравнений. Сначала составим уравнение по первому закону Кирхгофа — у нас три узла, поэтому уравнений будет два.

Затем, обходя контуры, составим три уравнения по второму закону: их нужно составить именно три, так как неизвестных токов в цепи шесть.

$$\begin{cases}
I_1 + I_6 + I_5 = 0 \\
-I_3 - I_1 + I_2 = 0 \\
-I_2 - I_4 - I_5 = 0
\end{cases}$$

$$I_1R_1 - I_3R_3 = -E_1$$

$$I_2R_2 + I_3R_3 - I_4R_4 = 0$$

$$I_4R_4 - I_5R_5 = E_1 - E_2$$

Решаем систему и находим ответ: I_1 =-2,3 A, I_2 =-0,4 A, I_3 =1,9 A, I_4 =1,5 A,

 $I_5=-1,1 A, I_6=3,4 A.$

7.3. Задачи для самостоятельного решения

7.1. Батареи имеют ЭДС $\varepsilon_1 = 2$ В и $\varepsilon_2 = 3$ В, сопротивление $R_3 = 1,5$ кОм, сопротивление амперметра $R_A = 0,5$ кОм. Падение потенциала на сопротивлении R_2 равно $U_2 = 1$ В (ток через R_2 направлен сверху вниз). Найти показание амперметра (рис. 7.2).



Рис. 7.2

 $[I_A = 1 \text{ MA}]$

7.2. Батареи имеют ЭДС $\varepsilon_1 = 2 \, \varepsilon_2$, сопротивления $R_1 = R_3 = 20$ Ом, $R_2 = 15$ Ом и $R_4 = 30$ Ом. Через амперметр течет ток I = 1,5 А, направленный снизу-вверх. Найти ЭДС ε_1 и ε_2 , а также токи I_2 и I_3 , текущие через сопротивления R_2 и R_3 (рис. 7.3).

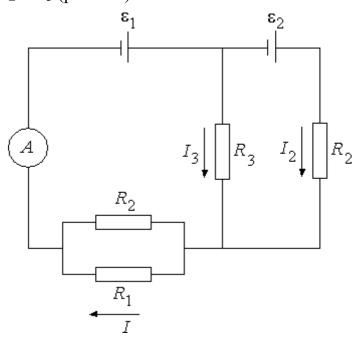


Рис. 7.3

 $[I_2 = 1,2 \text{ A}; I_3 = 0,3 \text{ A}; E_1 = 24 \text{ B}; E_2 = 12 \text{ B}]$

7.3. На рис. $\varepsilon_1 = 10$ В, $\varepsilon_2 = 20$ В, $\varepsilon_3 = 40$ В, а сопротивления $R_1 = R_2 = R_3 = R = 100$ м. Определите силу токов, протекающих через сопротивления (I) и через источники ЭДС (I'). Внутреннее сопротивление источников не учитывать (рис. 7.4).

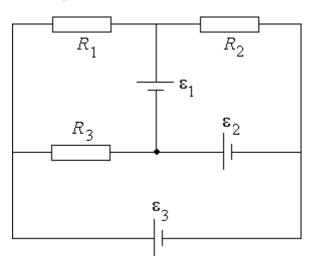


Рис. 7.4

 $[I_3 = 1 \text{ A}; I_2 = 3 \text{ A}; I_3 = 2 \text{ A}; I_1' = 2 \text{ A}; I_2' = 0; I_3' = 3 \text{ A}]$

7.4. Элементы имеют ЭДС $\varepsilon_1 = \varepsilon_2 = 1,5$ В и внутренние сопротивления $r_1 = r_2 = 0,5$ Ом, сопротивления $R_1 = R_2 = 5$ Ом и $R_3 = 1$ Ом, Сопротивление амперметра $R_A = 3$ Ом. Найти показание амперметра (рис. 7.5).

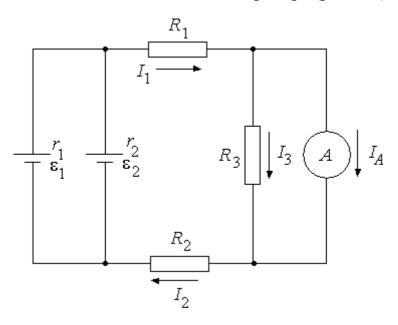


Рис. 7.5

[75 mA]

7.5. Найти ε_2 и ε_3 если $\varepsilon_1=25$ В, падения потенциала на сопротивлениях R_1 , R_2 , R_3 равны $U_1=U_2=U_3=10$ В (рис. 7.6).

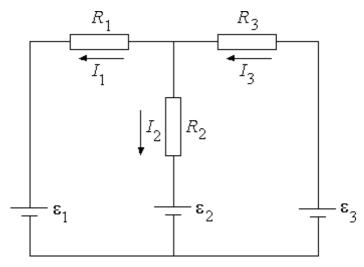


Рис. 7.6

 $[\epsilon_2 = 30 \text{ B}; \ \epsilon_3 = 45 \text{ B}]$

7.6. Батареи имеют ЭДС $\epsilon_1 = \epsilon_2 = \epsilon_3 = 6$ В, сопротивления $R_1 = 20$ Ом, $R_2 = 12$ Ом. При коротком замыкании верхнего узла схемы с отрицательным

зажимом батарей через замыкающий провод течет ток I=1,6 А. Найти токи I_i во всех участках цепи и сопротивление (рис. 7.7).

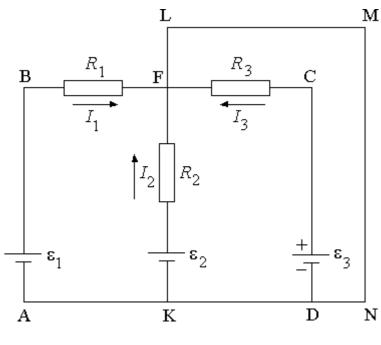


Рис. 7.7

[$I_1 = 0.3 \text{ A}$; $I_2 = 0.5 \text{ A}$; $I_3 = 0.8 \text{ A}$; $R_3 = 7.5 \text{ Om}$]

7.7. Два элемента с одинаковыми ЭДС $\epsilon_1 = \epsilon_2 = 2$ В и внутренними сопротивлениями $r_1 = 1$ Ом и $r_2 = 2$ Ом замкнуты на внешнее сопротивление R. Через элемент с ЭДС ϵ_1 течет ток $I_1 = 1$ А. Найти сопротивление R и ток I_2 , текущий через элемент с ЭДС ϵ_2 . Какой ток I течет через сопротивление I_3 (рис. 7.8)?

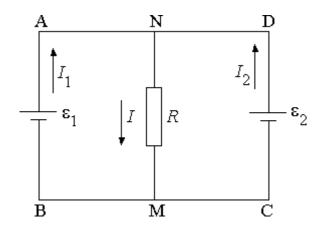


Рис. 7.8

[I = 1,5 A; R = 0,66 Om]

7.8. Найти токи I_i в отдельных ветвях мостика Уитсона при условии, что через гальванометр идет ток $I_g=0$. ЭДС элемента $\varepsilon=2$ В, сопротивления $R_1=30$ Ом, $R_2=45$ Ом и $R_3=200$ Ом (рис. 7.9).

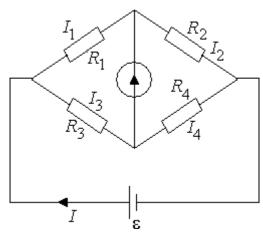


Рис. 7.9

 $[I_1 = I_2 = 26,7 \text{ mA}; I_3 = I_4 = 4 \text{ mA}]$

7.9. Батареи имеют ЭДС $\epsilon_1 = 110~\mathrm{B}$ и $\epsilon_2 = 220~\mathrm{B}$, сопротивления $R_1 = R_2 = 100~\mathrm{Om}$, $R_3 = 500~\mathrm{Om}$. Найти показание амперметра (рис. 7.10).

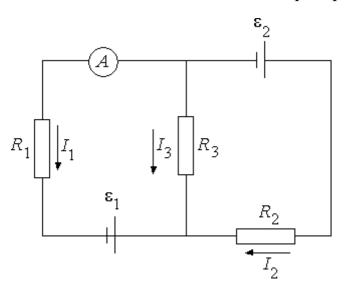


Рис. 7.10

[I = 0.4 A]

7.10. Два источника с ЭДС $\varepsilon_1 = 2$ В и $\varepsilon_2 = 1,5$ В и внутренними сопротивлениями $r_1 = 0,5$ Ом и $r_2 = 0,4$ Ом включены параллельно сопротивлению R = 2 Ом. Определить силу тока через это сопротивление (рис. 7.11).

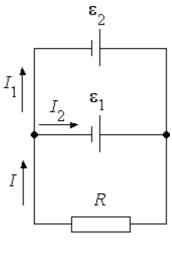


Рис. 7.11

$$[I = 0,775 \text{ A}]$$

8. ПОСТОЯННЫЙ ТОК

8.1. Основные формулы

Сила тока измеряется количеством электричества, проходящим через поперечное сечение проводника в единицу времени $I = \frac{dq}{dt} \, .$

$$I = \frac{dq}{dt}$$
.

Сопротивление R металлического проводника длиной l и площадью поперечного сечения S

$$R = \rho \frac{l}{S}$$
, $\rho = \rho_0 (1 + \alpha t)$,

– удельное где ρ – удельное сопротивление материала проводника; ρ_0

сопротивление при 0° С; α – температурный коэффициент сопротивления.

Для участка цепи, не содержащего ЭДС (однородного участка цепи)

$$I = \frac{\varphi_1 - \varphi_2}{R};$$

для неоднородного участка цепи

$$I = \frac{\varphi_1 - \varphi_2 + \varepsilon}{R}$$
;

для замкнутой цепи

$$I = \frac{\varepsilon}{R+r}$$
,

 $_{\Gamma Дe} \ \phi_1 - \phi_2 \ - \$ разность потенциалов на концах рассматриваемого участка

цепи общим сопротивлением R; ε – ЭДС источника с внутренним сопротивлением r.

При последовательности соединении проводников сила тока во всех частях цепи одинакова

$$I_1 = I_2 = I$$
.

Напряжение на концах участка цепи равна сумма напряжений на частях участка (рис. 8.1)

$$I_1 = I_2 = I$$
,
 $U = U_1 + U_2$,
 $R_{\text{OOIII}} = R_1 + R_2$.

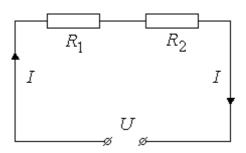


Рис. 8.1

При параллельном соединении проводников (рис. 8.2).

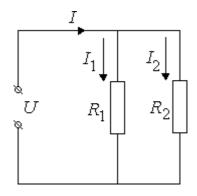


Рис. 8.2

Сила тока в неразветвленной цепи равна сумме сил токов, текущих в разветвленных участках цепи:

$$I = I_1 + I_2,$$

$$U_1 = U_2 = U,$$

$$\frac{1}{R_{\text{общ}}} = \frac{1}{R_1} + \frac{1}{R_2}.$$

РАБОТА И МОЩНОСТЬ ТОКА. ЗАКОН ДЖОУЛЯ-ЛЕНЦА. КПД ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Работа тока на данном участке цепи равна

$$A = UIt$$
, $A = Pt$.

При решении задач на работу A и мощность тока P в последовательно соединенных проводниках удобно использовать формулы:

$$A = IUt$$
 или $A = I^2 Rt$,

$$P = I^2 R$$
 или $P = UI$,

поскольку сила тока в таких проводниках одинакова.

Если проводники соединены параллельно, то можно применять формулы:

$$A = \frac{U^2}{R}t$$
 или $P = \frac{U^2}{R}$,

т.к. в этом случае одинаково напряжение на проводниках.

Если цепи состоит из источника тока с ЭДС ε и внутренним сопротивлением r, то вся работа тока в цепи ($A_{3\text{атр}}$) есть сумма работы на внешнем ($A_{\text{внешн}}$) и на внутреннем ($A_{\text{внутр}}$) участках цепи:

$$A_{\text{3aTp}} = A_{\text{внешн}} + A_{\text{внутр}},$$

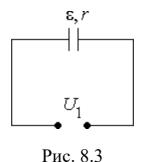
 $A_{\text{внешн}}$ — полезная работа.

$$A_{3\text{aTp}} = \varepsilon It ,$$

$$A_{\text{внешн}} = UIt = I^2 Rt ,$$

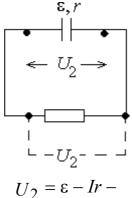
$$A_{\text{внутр}} = I^2 rt .$$

$$\eta = \frac{A_{\text{полезн}}}{A_{3\text{aTp}}} 100\% .$$


Закон Джоуля-Ленца определяет количество теплоты, выделившейся в проводнике при прохождении по нему электрического тока:

$$Q = I^2 Rt = \frac{U^2}{R} t = UIt.$$

8.2. Примеры решения задач


Задача 1. Определить напряжение на зажимах источника тока, имеющего ЭДС 2 в и внутреннее сопротивление 0,5 Ом, до и после подключения к нему внешнего сопротивления 4,5 Ом (рис. 8.3).

Анализ и решение.

$$U_1 = \varepsilon = 2$$
 в.

Цепь разомкнута, падение напряжения (IR)=0 (ток отсутствует).

напряжение на клеммах источника.

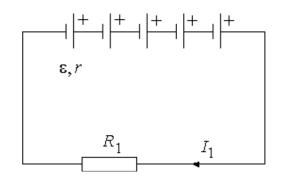
I для замкнутого контура:

$$I = \frac{\varepsilon}{R+r}.$$

$$U_2 = \varepsilon - \frac{\varepsilon r}{R+r} = \frac{\varepsilon R + \varepsilon r - \varepsilon r}{R+r} = \varepsilon \frac{R}{R+r} = 1,8 \text{ B}.$$

Падение напряжения во внешней цепи:

$$U = IR = \frac{E}{R + r}R = 1.8 \text{ B}.$$


Численное значение разности потенциалов на зажимах источника и падения напряжения во внешней цепи совпадают. Это возможно только тогда, когда во внешней цепи нет других источников тока.

Задача 2. 5 элементов с одинаковыми ЭДС, соединенных последовательно на внешний резистор сопротивления $R_1 = 3$ Ом, дали ток $I_1 = 2.5$ А.

Те же элементы, соединенные параллельно на внешний резистор сопротивлением $R_2 = 2,46$ Ом, дали ток $I_2 = 0,8$ А. Определить ЭДС и

внутреннее сопротивление каждого элемента (рис. 8.4).

Анализ и решение.

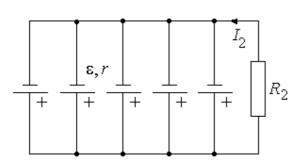


Рис. 8.4

Закон Ома для замкнутой цепи для 1 случая

$$I_1 = \frac{5\varepsilon}{5r + R_1};\tag{1}$$

для 2 случая

$$I_2 = \frac{\varepsilon}{\frac{r}{5} + R_2}. (2)$$

$$\varepsilon = I_2 \left(\frac{r}{5} + R_2 \right). \tag{3}$$

Подставив (3) в (1), найдем
$$I_1=\frac{5I_2\bigg(\frac{r}{5}+R_2\bigg)}{5r+R_1}=\frac{I_2\big(r+5R_2\big)}{5r+R_1}.$$

Из последнего выражения найдем r

Из (3) найдем ЭДС

$$\varepsilon = 0.8 \left(\frac{0.2}{5} + 2.46 \right) = 2 \text{ B}.$$

Задача 3. Участок цепи состоит из стальной проволоки длиной $l_1=2$ м с площадью поперечного сечения $S_1=0,48$ мм², соединенной последовательно с никелиновой проволокой длиной $l_2=1$ м и площадью поперечного сечения $S_2=0,21$ мм². Какое напряжение надо подвести к участку, чтобы получить силу тока I=0,6 А?

Анализ и решение. Определим сопротивления обеих проволок (Ом).

$$R_{st} = \frac{\rho_{st} l_1}{S_1} = \frac{0.12 \cdot 10^{-6} \cdot 2}{0.48 \cdot 10^{-6}} = 0.5$$

$$R_{nik} = \frac{\rho_{nik}l_2}{S_2} = \frac{0,42 \cdot 10^{-6} \cdot 1}{0,21 \cdot 10^{-6}} = 2$$

Так как проволоки соединены последовательно, их сопротивления складываются:

$$R_{st} + R_{nik} = 0, 5 + 2 = 2, 5$$

Теперь рассчитаем напряжение (В):

$$U = I(R_{st} + R_{nik}) = 0, 6 \cdot 2, 5 = 1, 5$$

Otbet: $U = 1,5 \, B$.

Задача 4. Две спирали из различных материалов соединены параллельно. Отношения их длин 15:14, а площадей поперечных сечений – 5:4. Оказалось, что за одинаковое время в них выделяется одинаковое количество теплоты. Определить отношение удельных сопротивлений этих материалов.

Анализ и решение.

Если выделилось одно и то же количество тепла, то

$$Q_1 = Q_2 I_1^2 R_1 = I_2^2 R_2$$

Так как проволоки соединены параллельно, то напряжение на их концах олинаково:

$$U = I_1 R_1 = I_2 R_2$$

Откуда найдем:

$$UI_1 = UI_2$$

$$\frac{I_2}{I_1} = 1$$

Сопротивление первой проволоки зависит от удельного сопротивления материала, длины и поперечного сечения:

$$R_1 = \frac{\rho_1 l_1}{S_1}$$

Аналогично и для второй проволоки:

$$R_2 = \frac{\rho_2 l_2}{S_2}$$

«Вытащим» удельное сопротивление:

$$\rho_1 = \frac{R_1 S_1}{l_1}$$

$$\rho_2 = \frac{R_2 S_2}{l_2}$$

Разделим первое на второе:
$$\frac{\rho_1}{\rho_2} = \frac{R_1 S_1 I_2}{R_2 S_2 I_1} = \frac{S_1}{S_2} \cdot \frac{l_2}{l_1} \cdot \frac{I_2}{I_1} = \frac{5}{4} \cdot \frac{14}{15} = \frac{7}{6}$$
 Ответ:
$$\frac{\rho_1}{\rho_2} = \frac{7}{6}$$

Задача 5. Электродвигатель подъемного крана подключен к источнику тока напряжением $U=380~{\rm B},$ при этом сила тока в его обмотке $I=20~{\rm A}.$ Каков КПД установки, если груз массой m=1 т кран поднимает на высоту $h=19\,\mathrm{m}$ за

время t = 50 c?

Анализ и решение.

Электродвигатель совершает работу A = mgh

Мощность (фактическая) равна
$$P_r = \frac{A}{t} = \frac{mgh}{t} = \frac{1000 \cdot 10 \cdot 19}{50} = 3800$$

Мощность двигателя равна:

$$P = UI = 380 \cdot 20 = 7600$$

Тогда КПД крана

$$\eta = \frac{P_r}{P} = 0.5$$

Ответ: КПД крана 50%.

8.2. Задачи для самостоятельного решения

8.1. Аккумулятор, ЭДС которого $\varepsilon = 25 \text{ B}$ и внутреннее сопротивление r = 1 Ом, заряжается от сети напряжением U = 40 В через дополнительное сопротивление R = 5 Ом. Найти напряжение U_1 на зажимах аккумулятора.

[27,5 B]

8.2. При коротком замыкании батареи возникает ток I, а при подключении резистора сопротивлением R ток в цепи I_2 . Определить ЭДС ϵ батареи.

 $\left[\varepsilon = I_2 R \left(1 - \frac{I_2}{I_1} \right) \right]$

8.3. Аккумулятор, внутренним сопротивлением которого пренебречь, поочередно замыкали на два разных резистора. В первом случае ток был I1, во втором – I2. Определить ток при замыкании аккумулятора на эти резисторы, соединенные последовательно.

$$[I = I_1 I_2 (I_1 + I_2)]$$

8.4. Два элемента с ЭДС $\epsilon_1 = 2$ В и $\epsilon_2 = 1$ В и внутренними

сопротивлениями r_1 = 0,7 Ом и r_2 = 0,3 Ом соответственно соединены так, как показано на рисунке. Определить разность потенциалов $\phi_1 - \phi_2$ (рис. 8.5).

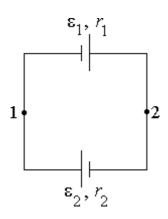


Рис. 8.5

[-0,1]

8.5. Вольтметр со шкалой на U = 100 В имеет внутреннее сопротивление $R_{\rm B} = 10$ кОм. Какую наибольшую разность потенциалов можно измерить этим прибором, если подсоединить к нему добавочное сопротивление $R_{\rm A} = 90$ кОм?

[1000 B]

- 8.6. Амперметр рассчитан на измерение максимального тока
- $I_{\rm max}=0.1~{\rm A},$ при этом падение напряжения на амперметре $U=0.2~{\rm B}.$ Каким сопротивлением необходимо зашунтировать прибор, чтобы им можно было измерять ток до $I=2~{\rm A}?$

[0,1 Om]

8.7. К батарее через переменное сопротивление подключен вольтметр. Если сопротивление уменьшить втрое, то показания вольтметра возрастут вдвое. Во сколько раз изменится показание вольтметра, если сопротивление уменьшить до нуля?

[B 4 pasa]

8.8. Два аккумулятора с ЭДС $\epsilon_1 = 57~{\rm B}~{\rm u}$ $\epsilon_2 = 32~{\rm B}$ соединены, как

показано на рисунке. Что покажет вольтметр с бесконечно большим сопротивлением, если отношения внутренних сопротивлений аккумуляторов $r_1 / r_1 = 1,5$ (рис. 8.6)?

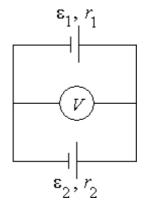


Рис. 8.6

[-47 B]

8.9. Если на вход электрической цепи подано напряжение $U_1 = 100 \text{ B}$, то напряжение на выходе $U_2 = 40 \text{ B}$. Если на выход цепи подать напряжение $U_3 = 60 \text{ B}$, то напряжение на входе окажется равным $U_4 = 15 \text{ B}$. Сопротивление $R_2 = 60 \text{ Om}$. Определить сопротивления R_1 , R_3 (рис. 8.7).

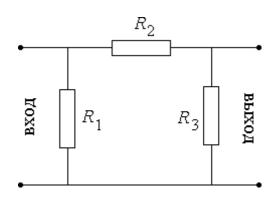


Рис. 8.7

 $[R_1 = 20 \text{ OM}, R_3 = 40 \text{ OM}]$

8.10. Аккумулятор замкнут на некоторый резистор. В день последовательно резистору включается параллельно два амперметра, которые показывают токи соответственно I1 и I2. Затем эти амперметры включаются в цепи, последовательно. В этом случае их показания равны I3. Определить ток I в цепи при отсутствии амперметров.

$$I = \frac{(I_1 + I_2)^2 - I_1 I_2}{I_1 + I_2 - \frac{I_1 I_2}{I_3}}$$

8.11. Для определения места повреждения изоляции между двухпроводной телефонной линии длиной l=6 км к одному концу линии подсоединили батарею с ЭДС $\xi=24$ В. При этом оказалось, что если провода у другого конца линии разомкнуты, то через батарею течет ток I_1 = 1,5 A, а если замкнуты накоротко, то сила тока через батарею I_2 = 2 A. Определить место повреждения изоляции. Сопротивление одного километра провода R_0 = 6 Ом. Внутренним сопротивлением батареи пренебречь.

[2,29 км от места подключения батареи]

8.12. Найти заряд на конденсаторе C. Внутренним сопротивлением батареи пренебречь. ЭДС батареи равна ξ (рис. 8.8).

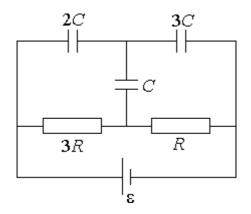


Рис. 8.8

8.13. Найти разность потенциалов между обкладками каждого из конденсаторов, емкости которых $C_1 = 4$ мк Φ и $C_2 = 1$ мк Φ , если ЭДС

источников $\xi_1 = 2$ B, $\xi_2 = 6$ B (рис. 8.9).

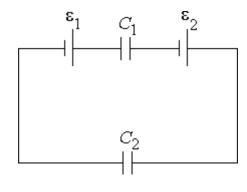


Рис. 8.9

$$[U_1 = 0.8 \text{ B}, U_2 = 3.2 \text{ B}]$$

8.14. Найти разность потенциалов между точками A и B. Величины ξ_1, ξ_2, C_1, C_2 заданы (рис. 8.10).

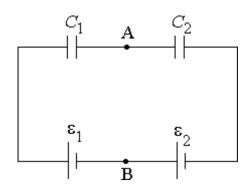


Рис. 8.10

$$\begin{bmatrix} \varphi_A - \varphi_B = \frac{C_1 \xi_1 - C_2 \xi_2}{C_1 + C_2} \end{bmatrix}$$

8.15. Найти разность потенциалов между точками a и b. ЭДС каждого элемента ξ , внутреннее сопротивление r (рис. 8.11).

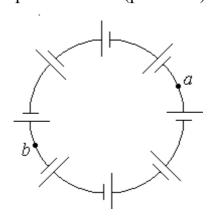


Рис. 8.11