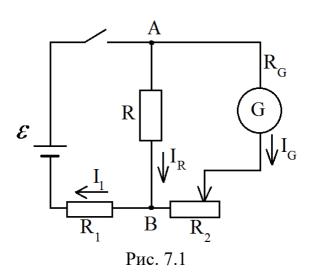
# Лабораторная работа № 5

### ГРАДУИРОВКА ГАЛЬВАНОМЕТРА


#### Цель работы

Целью лабораторной работы является ознакомление студентов с методом градуировки электрических приборов и усвоение ими правил Кирхгофа.

#### Описание установки и метода изучения процесса

Градуировка прибора заключается в определении цены наименьшего деления его шкалы, т.е. той доли  $A_1$  измеряемой величины A, подаваемой на клеммы прибора, которая вызывает отклонение его стрелки на одно деление (n=1) шкалы.

Для градуировки гальванометра по току используется схема (рис 7.1), где  $\varepsilon$  – источник ЭДС с внутренним сопротивлением r; G – гальванометр;  $R_1$ ,  $R_2$ , R – переменные сопротивления;  $R_G$  – сопротивление гальванометра;  $I_R$ ,  $I_1$ ,  $I_2$  – токи, протекающие в соответствующих ветвях цепи;  $I_G = I_2$  – ток, протекающий через гальванометр.



Задача сводится к получению экспериментальной зависимости  $I_{Gi} = f(n_i)$ , где  $n_i$  — число делений шкалы, на которое отклоняется стрелка прибора при протекании через него тока  $I_{Gi}$  соответствующей величины. Ток  $I_{Gi}$ , протекающий через гальванометр, определяется выражением

$$I_G = \frac{\varepsilon R}{R(R_G + R_1 + r + R_2) + (R_1 + r)(R_2 + R_G)}$$
(7.1)

которое получается в результате решение системы из трех уравнений, составленных на основании первого правила Кирхгофа для узла В и второго правила Кирхгофа для контуров  $\varepsilon$ AGB $\varepsilon$  и AGBA схемы рис.7.1. Как видно из выражения (7.1), при изменении  $R_2$  (при заданных значениях  $R_1$ , R,  $R_G$  и  $\varepsilon$ ) будет изменяться  $I_G$ , а следовательно, и величина отклонения стрелки прибора.

$$\epsilon = 5 \text{ B}, R_1 = 500 \text{ Om}, R = 60 \text{ Om}, R_G = 130 \text{ Om}, r = 0 \text{ Om}$$

Таблица 7.1

| $\mathcal{N}_{\underline{o}}$ | R <sub>2'OM</sub> | п, дел | $I_G$ , $mA$ |
|-------------------------------|-------------------|--------|--------------|
| 1                             | 900               | 10     |              |
| 2                             | 800               | 11     |              |
| 3                             | 700               | 12.5   |              |
| 4                             | 600               | 14.5   |              |
| 5                             | 500               | 16.5   |              |
| 6                             | 400               | 19.5   |              |
| 7                             | 300               | 24     |              |
| 8                             | 200               | 30     |              |
| 9                             | 100               | 40.5   |              |
| 10                            | 0                 | 62.5   |              |

$$C = (I_{G6} - I_{G3})/(n_6 - n_3) =$$

$$S = 1/C =$$

## Контрольные вопросы

- 1. Что означает проградуировать прибор?
- 2. Сформулируйте правила Кирхгофа.
- 3. Стрелка гальванометра стоит на нулевом делении шкалы, когда R=0. Докажите это, применив второе правило Кирхгофа.
- 4. Что нужно сделать, чтобы отклонить стрелку гальванометра до предельного значения шкалы, если она туда не отклонилась при максимальном значении R?
- 5. Где будет находиться стрелка прибора, если  $R_1$ = $R_2$ =0, а  $R \neq 0$ ? Что может произойти с гальванометром в том случае, если ЭДС источника достаточно большая величина?