Казанский государственный энергетический университет Кафедра инженерной графики

В.А. РУКАВИШНИКОВ

ЭЛЕКТРОННЫЕ ГЕОМЕТРИЧЕСКИЕ МОДЕЛИ И ИХ ИЗОБРАЖЕНИЯ

Методические указания к лабораторной работе модуля № 2 по дисциплине «Инженерное геометрическое моделирование»

ЗАДАЧА № 2

ПРИМЕР СОЗДАНИЯ ЭЛЕКТРОННОЙ ГЕОМЕТРИЧЕСКОЙ МОДЕЛИ ПОЛОГО ШАРА СО СКВОЗНЫМИ ФРОНТАЛЬНЫМИ ОТВЕРСТИЯМИ

Цель работы: формирование способностей (компетенций) студентов выполнять в системе автоматизированного проектирования электронные модели деталей (ЭМИ) формальных тел (ГОСТ 2.056-2014) и создавать на их основе чертежи, включающие виды, разрезы и сечения (ГОСТ 2.305-2008), размеры (ГОСТ 2.307-2011), текстовую информацию (ГОСТ 2.104-2006).

В соответствии с заданием необходимо создать:

- 1. Электронную модель полого шара со сквозными отверстиями в соответствии с ГОСТ 2.056-2014.
 - 2. Электронный чертеж полого шара по электронной модели:
- Построить главный вид, виды слева и сверху, а также изометрический вид в соответствии с ГОСТ 2.305-2008.
- Выполнить полный разрез на главном виде, а также горизонтальный разрез на виде сверху и профильный на виде слева в соответствии с ГОСТ 2.305-2008.
 - Нанести необходимые осевые и центровые линии.
 - Проставить на чертеже размеры в соответствии с ГОСТ 2.307-2011.
 - Заполнить основную надпись в соответствии с ГОСТ 2.104-2006.

ПРИМЕР ЗАДАНИЯ

Постройте модель полого шара с отверстиями (рис. 1).

Шар — тело вращения. Его построение возможно двумя способами: с использованием команды «Сфера» О, расположенной в закладке «3D модель» ленты «Примитивы» или как тело вращения командой «Вращение» 🖨 в ленте «Создать».

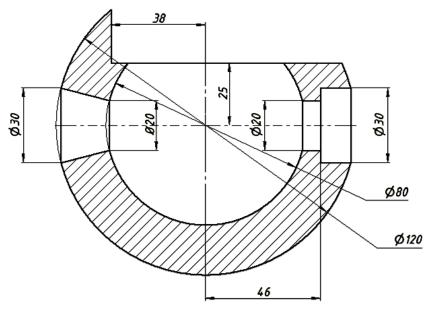


Рис. 1. Чертеж полого шара с отверстиями

1. Создание электронной модели шара

Первый вариант построения полого шара

Нажмите на кнопку «Сфера» ○ и выбираем в браузере плоскость построения *XY*. Курсором зафиксируйте центр шара в начале координат и в окне размеров введите 120. Нажмите кнопку «ОК» в появляющемся диалоговом окне «Вращение». Модель шара диаметром 120 мм готова (рис. 2).

Рис. 2. Модель шара диаметром 120 мм

Постройте второй шар диаметром 80 мм и вычтите его из первого. Для этого повторите шаги построения первого шара, задав диаметр 80 мм, а на завершающем шаге в появляющемся диалоговом окне «Вращение» выберите «Вычитание» перед нажатием кнопки «ОК» для завершения построения. Получили полый шар (рис. 3).



Рис. 3. Модель полого шара

Второй вариант построения полого шара

Создать 2D-эскиз

Выберите команду «Создать 2D-эскиз» построения в браузере построения **XZ**.

а затем плоскость

Выберите команду «Окружность» \bigcirc , укажите курсором ее центр в начале координат и задайте в окне размера диаметр первой окружности — 120 мм.

Постройте вторую окружность диаметром 80 мм (рис. 4).

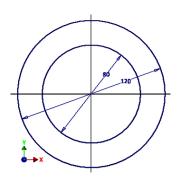


Рис. 4. Построение окружностей диаметрами 120 мм и 80 мм

Проведите вертикальную диаметральную линию, используя команду «Отрезок» ✓, а затем удалите части геометрических элементов командой «Обрезать» ☀. Эскиз примет вид как на рисунке 5.

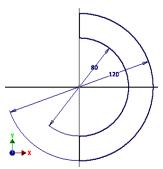


Рис. 5. Построение отрезков для удаления части геометрических элементов Нажмите кнопку «Принять эскиз» У (рис. 6).

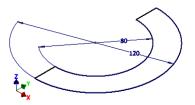


Рис. 6. Изображение части окружностей после команды «Принять эскиз»

Нажмите кнопку команды «Вращение» 🖨, изображение примет вид как на рисунке 7.

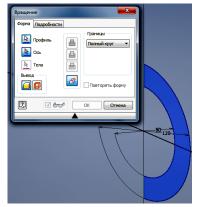


Рис. 7. Выполнение команды «Вращение» и диалоговое окно «Вращение»

Выберите в диалоговом окне «Вращение» команду «Ось» и выберите один из диаметральных отрезков (рис. 8).

Рис. 8. Выбор в диалоговом окне «Вращение» команды «Ось»

Поскольку в верхнем поле «Границы» по умолчанию задан «Полный круг», завершите построения нажатием кнопки «ОК».

Полый шар построен (рис. 9).

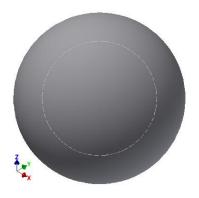


Рис. 9. Полый шар

Построение верхней срезки шара. Выберите команду «Создать 2D-эскиз»

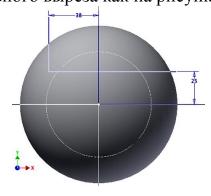


Рис. 10. Построение эскиза фронтального выреза шара

Рис. 11. Изометрический вид модели шара

Выберите команду «Выдавливание» и выберите построенные линии, затем переместите курсор в удаляемую область щелкните левой кнопкой мыши. Выберите режим «Вычитание», установите расстояние выреза равным 120, а направление выреза «Симметрично» (рис. 12).

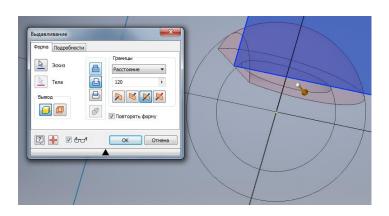


Рис. 12. Построение выреза шара

Завершите построения нажатием кнопки «ОК» (рис. 13).

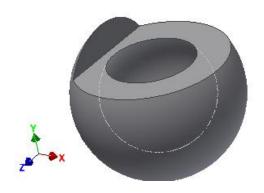


Рис. 13. Модель полого шара с вырезом

Построение конического отверстия. Для создания конического отверстия, предварительно для удобства построения, переедем в каркасный стиль отображения (рис.14).

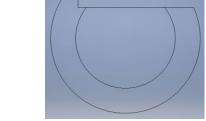


Рис. 14. Каркасный стиль отображения шара

При построении конического отверстия нам понадобятся вспомогательные геометрические элементы. Войдите в режим создания эскиза, для этого войдите в режим 2D-эскиза и задайте плоскость построения. На панели «Формат» нажмите кнопку «Вспомогательная геометрия» (рис.15).

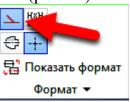
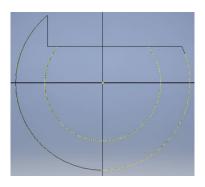



Рис. 15. Включение режима «Вспомогательная геометрия»

Включите режим «Проекционная геометрия» (рис. 16). Спроецируйте окружности в режиме «Вспомогательная геометрия» на плоскость построения. До этого все линии шара не были частью плоскости построения, даже если и находились в ней. Выберите последовательно обе окружности. Их начертание изменится – они должны стать пунктирными.

Рис. 16. Включение режим проецирования

Включите режим «Осевая линия» для задания оси вращения (рис. 17).

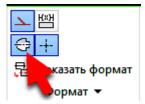


Рис. Режим «Осевая линия»

Вычертите командой «Отрезок» ось вращения, соединив центр и квадрант окружности (рис. 18).

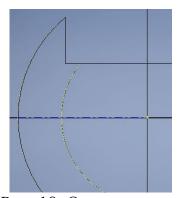


Рис. 18. Ось вращения

Отключите режимы «Вспомогательная геометрия» и «Осевая линия» для построения основной геометрии (рис. 19).

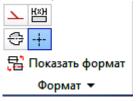


Рис. 19. Отключение режимов «Вспомогательная геометрия» и «Осевая линия»

Вычертите эскиз образующей конуса и задайте размеры как на рисунке 20. При вычерчивании отрезка задавайте конечные точки на дугах вспомогательных окружностей, а размеры, выбирая конечную точку отрезка и ось вращения. Нажмите кнопку «Завершить эскиз» •

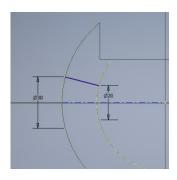


Рис. 20. Построение образующей конуса

Выберите команду «Вращение» и задайте следующие параметры в диалоговом окне или укажите их на экране: образующую и зону выреза, режим вычитания, ось вращения (рис. 21). Нажмите кнопку «ОК» (рис. 22).

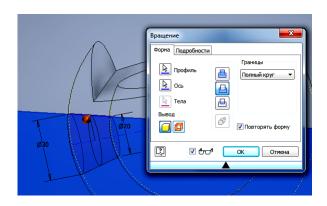


Рис. 21. Задание параметров конического отверстия

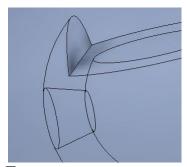


Рис. 22. Готовое коническое отверстие

Построение ступенчатого цилиндрического выреза.

Первым постройте отверстие диаметром 20 мм. В режиме «Эскиз» на плоскости YZ постройте окружность диаметром 20 мм с помощью команды «Окружность» \mathfrak{O} .

Используя команду «Выдавливание» □, в режиме «Вычитание» удалите материал в соответствующем направлении (рис. 23). Нажмите кнопку кнопку «ОК»

(рис. 24).

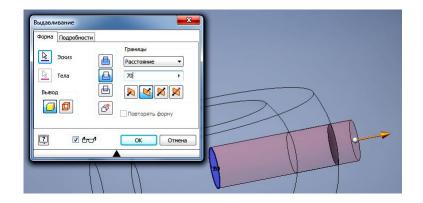


Рис. 23. Задание параметров первого отверстия

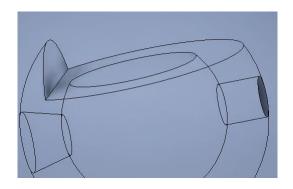


Рис. 24. Готовое первое цилиндрическое отверстие

Постройте отверстие диаметром 30 мм. Особенность его построения в том, что базовая окружность должна быть построена на плоскости, расположенной на расстоянии 46 мм от плоскости YZ. Предварительно в браузере для плоскости YZ установите режим «Видимость».

Перейдите в режим эскиза. Для выбора плоскости построения укажем плоскость **YZ** и, не отпуская левой кнопки мыши, переместим копию плоскости в нужном вам направлении. В появившемся окне размера введите число -46 (рис. 25). Нажмите кнопку «ОК» (рис. 26).

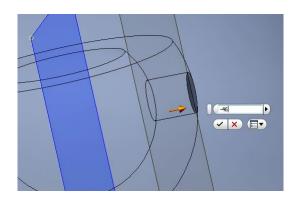


Рис. 25. Создание параллельной плоскости построения на расстоянии 46 мм

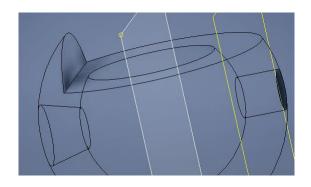


Рис. 26. Готовая вспомогательная плоскость построения

Рисуем окружность диаметром 30 мм на вспомогательной плоскости и переходим в режим модели (рис. 27)

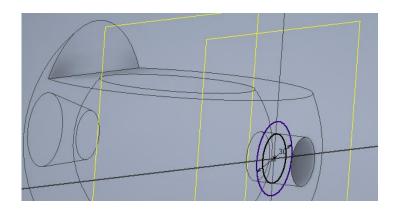
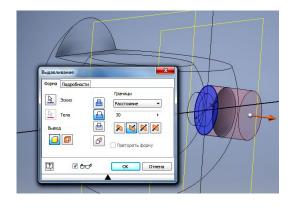



Рис. 27. Эскиз основания цилиндра диаметром 30 мм

Используя команду «Выдавливание» в режиме «Вычитание», создайте вторую ступень цилиндрического отверстия. Нажмите кнопку «ОК» и завершите построение (рис. 28).

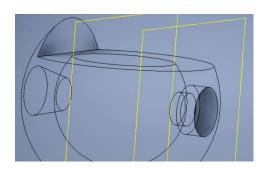


Рис. 28. Построение ступенчатого отверстия завершено

Вернемся к стилю отображения «Тонированный». Модель примет вид как на рисунке 29.

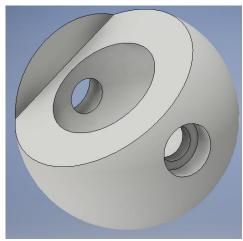


Рис. 29. Модель в стиле отображения «Тонированный»

Сохраните созданную модель.

2. Построение чертежа шара

Построения электронного чертежа шара по трехмерной модели аналогично технологии построения рассмотренной ранее для цилиндра.

Постройте четыре вида. На виде слева и снизу выполните местные разрезы. Полученный чертеж примет виз как показано на рисунке 30.

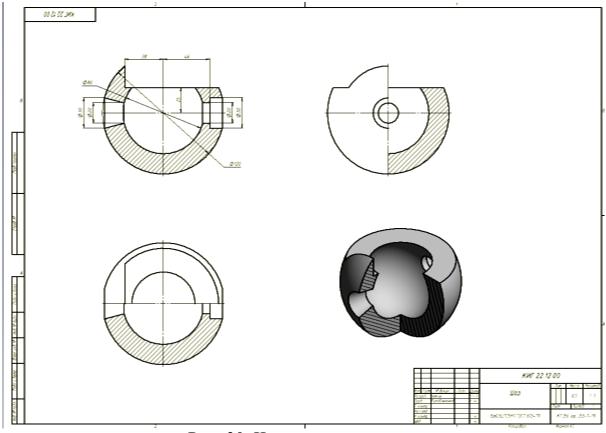


Рис. 30. Чертеж полого шара

					КИГ.22.12.00				
						Λ	um.	Масса	Масштаδ
Изм.	Лист	№ докум.	Подп.	Дата	Шар				
Разраб.		<i>Уткин</i>		29.10.2018	шир		0,5	1:1	
Προβ.		Рукавишников		01.01.1601					
Т. контр.						Лист		Листо	β 1
Нач.отд.						КГЭУ, гр. ЭЭ-1-19			
Н. контр.				01.01.1601	БрОЗЦ7С5Н1 ГОСТ 613-79				
Утв.				01.01.1601		<u> </u>			

Рис. 31. Пример заполнения основной надписи. Работа завершена.