Типовые задания

- 1. Во сколько раз сила гравитационного притяжения между двумя протонами меньше силы их электростатического отталкивания?
- 2. Два шарика с зарядами q1 = 6,66нКл и q2 = 13,33нКл находятся на расстоянии r1 = 40см. Какую работу А надо совершить, чтобы сблизить их до расстояния r2 = 25см?
- 3. В каких пределах может изменяться емкость системы, состоящей из двух конденсаторов переменной емкости, если емкость каждого из них изменяется от 10 до 450 пФ?
- 4. Найти силу, действующую на заряд q=2/3 нКл, если заряд помещен в поле заряженной плоскости с поверхностной плотностью заряда $\sigma=20$ мкКл/м2 Диэлектрическая проницаемость среды $\xi=6$.
- 5. Определите поток Φ_E вектора напряженности электрического поля, через сферическую поверхность, охватывающую точечные заряды q=7 нКл и q=-4 нКл.
- 6. Элемент, имеющий э.д.с. $\varepsilon = 1,1$ В и внутреннее сопротивление r = 1 Ом, замкнут на внешнее сопротивление R = 9 Ом. Найти ток I в цепи, падение потенциала U во внешней цепи и падение потенциала U_r внутри элемента. С каким к.п.д. η работает элемент?
- 7. Катушка из медной проволоки имеет сопротивление $R=10.8~{\rm Om}.$ Масса медной проволоки $m=3.41~{\rm kr}.$ Какой длины 1 и какого диаметра d проволока намотана на катушке? ($\rho_m=0.017~{\rm mkOm\cdot m}, \, \rho_m=8.6\cdot10^3~{\rm kr/m}^3$)
- 8. Электропечь должна давать количество теплоты $Q = 0.1 \, \text{МДж}$ за время $\tau = 10 \, \text{мин}$. Какова должна быть длина нихромовой проволоки сечения $S = 0.5 \, \text{мм}^2$, если печь предназначается для сети с напряжением $U = 36 \, \text{B}$? Удельное сопротивление нихрома $\rho = 1.2 \, \text{мкOm·m}$.
- 9. Батареи имеют э.д.с. ε_1 =2B и ε_2 =3B, сопротивления R_1 = 1 кОм, R_2 = 0,5 кОм и R_3 = 0,2 кОм, сопротивление амперметра R_A = 0,2 кОм. Найти ε_1 показание амперметра.
- 10. К батарее с напряжением 100 В присоединили два конденсатора емкостью 0,02 мкФ и 0,03 мкФ. Определить заряд первого конденсатора, если они соединены последовательно.
- 11. Найти индуктивность соленоида длины L, обмоткой которого является медная проволока массы m. Сопротивление обмотки R. Диаметр соленоида значительно меньше его длины.
- 12. По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
- 13. Катушку индуктивности L=300 мГн и сопротивления R=140 мОм подключили к источнику постоянного напряжения. Через сколько времени ток через катушку достигнет n =50 % установившегося значения?
- 14. Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить силу эквивалентного кругового

тока I и напряженность H поля в центре окружности.

- 15. Сколько метров тонкого провода надо взять для изготовления соленоида длины l_0 =100 см с индуктивностью L=1,0 мГн, если диаметр сечения соленоида значительно меньше его длины?
- 16. Найти индуктивность соленоида длины L, обмоткой которого является медная проволока массы m. Сопротивление обмотки R. Диаметр соленоида значительно меньше его длины.
- 17. По тонкому проволочному кольцу течет ток. Не изменяя силы тока в проводнике, ему придали форму квадрата. Во сколько раз изменилась магнитная индукция в центре контура?
- 18. Катушку индуктивности L=300 мГн и сопротивления R=140 мОм подключили к источнику постоянного напряжения. Через сколько времени ток через катушку достигнет n =50 % установившегося значения?
- 19. Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом r=53 пм. Вычислить силу эквивалентного кругового тока I и напряженность H поля в центре окружности.
- 20. Определить индуктивность тороидального соленоида из N витков, внутренний радиус которого равен b, а поперечное сечение имеет форму квадрата со стороной а. Пространство внутри соленоида заполнено однородным парамагнетиком с магнитной проницаемостью µ.