Занятие № 3

Тема: Дифракция света

Краткая теория

Дифракция света — это совокупность явлений, наблюдаемых при распространении света сквозь малые отверстия, вблизи границ непрозрачных тел и обусловленных волновой природой света. Под дифракцией света обычно понимают отклонения от законов распространения света, описываемых геометрической оптикой.

Для света явление дифракции имеет особенности: длина волны λ много меньше размеров d преград (или отверстий). Поэтому наблюдать дифракцию

можно только на достаточно больших расстояниях
$$l$$
 от преграды. $\left(l \ge \frac{d^2}{\lambda}\right)$.

Memod зон Френеля. Согласно принципу Гюйгенса-Френеля, действие источника S заменяют действием воображаемых источников, расположенных на волновой поверхности Φ . Амплитуда световой волны определяется в точке M (рис. 3.1).

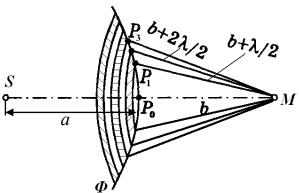


Рис. 3.1

Волновую поверхность Φ Френель разбил на кольцевые зоны такого размера, чтобы расстояния от краев зоны до точки M отличались на $\frac{\lambda}{2}$

$$P_1M - P_0M = P_2M - P_1M = ... = \frac{\lambda}{2}$$
.

Колебания от соседних зон проходят до точки M расстояния, отличающиеся на $\frac{\lambda}{2}$, поэтому в точку M они приходят в противоположной фазе и при наложении эти колебания будут взаимно ослаблять друг друга. Амплитуда результирующего светового колебания в точке M

$$A = A_1 - A_2 + A_3 - A_4 + \dots,$$

где A_1, A_2, \ldots – амплитуды колебаний, возбуждаемых $1, 2, \ldots$ зонами. Амплитуда результирующих колебаний в точке M

$$A \approx \frac{A_1}{2}$$
.

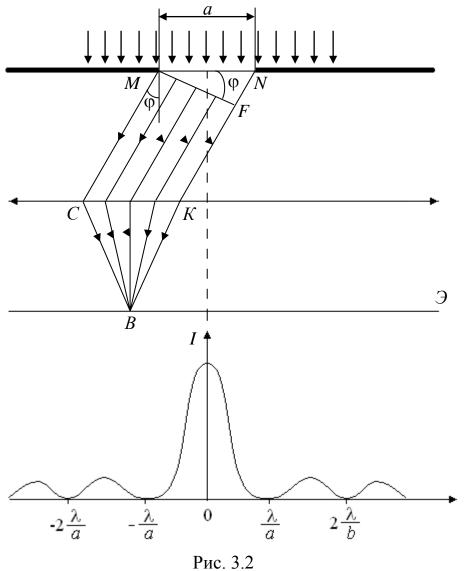
Площадь *m*-ой зоны Френеля

$$\Delta \sigma_m = \frac{\pi a b \lambda}{a + b},$$

где a – расстояние от точечного источника света до волновой поверхности. Радиус внешней границы m-ой зоны Френеля

$$r_m = \sqrt{\frac{maa}{a+b}\lambda}, \quad r_m = \sqrt{\frac{ab}{a+b}m\lambda}.$$
 (3.1)

Зонные пластинки. В простейшем случае это стеклянные пластинки, на поверхность которых нанесены по принципу расположения зон Френеля чередующиеся прозрачные и непрозрачные кольца с радиусами r_m зон Френеля, определенными для заданных значений a,b,λ выражением (3.1)


$$m=0,\,2,\,4,\,\dots\,$$
 для прозрачных колец; $m=1,\,3,\,5,\,\dots\,$ для непрозрачных.

Если поместить зонную пластинку в строго определенном месте (на расстоянии a от точечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки), то для света длиной волны λ она перекроет четные зоны и оставит свободными нечетные. В результате результирующая амплитуда $A = A_1 + A_3 + A_5 + ...$ будет больше, чем при полностью открытом волновом фронте.

Зонная пластинка действует подобно собирающей линзе, увеличивая освещенность.

Дифракция Фраунгофера на щели. *Дифракция Фраунгофера* наблюдается, когда на щель или отверстие направляется параллельный пучок света (плоская волна), а дифракционная картина наблюдается на достаточно большом расстоянии (практически в параллельных лучах).

Плоская монохроматическая волна падает нормально на щель MN шириной a. Параллельные пучки лучей, выходящие из щели в произвольном направлении ϕ (ϕ – угол дифракции), собираются линзой в точке B (рис. 3.2).

Открытую часть волновой поверхности MN разобьем на зоны Френеля, которые имеют вид полос, параллельных ребру M и проведенные так, чтобы разность хода от их соответственных точек равнялось $\frac{\lambda}{2}$. Тогда оптическая разность хода между крайними лучами MC и NK

$$\Delta = NF = a\sin\varphi.$$

Число зон Френеля, умещающихся на ширине щели,

$$\frac{\Delta}{\lambda/2} = \frac{a\sin\varphi}{\lambda/2}.$$

Условие дифракционного максимума в точке B (число зон Френеля нечетное)

$$a \sin \varphi = \pm (2m+1)\frac{\lambda}{2}, \quad (m=1, 2, 3,...).$$

Условие дифракционного минимума в точке B (число зон Френеля четное)

$$a\sin\varphi = \pm 2m\frac{\lambda}{2}, \quad (m=1, 2, 3,...).$$

Дифракционная решетка — спектральный прибор, состоящий из системы параллельных щелей (штрихов) равной толщины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Она предназначена для разложения света в спектр и измерения длин волн.

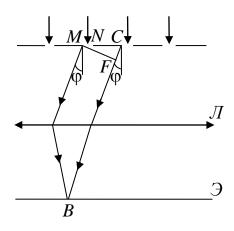


Рис. 3.3

MN = a — ширина щели;

NC = b – расстояние между щелями;

d = a + b — период решетки.

При освещении решетки монохроматическим светом световые волны от всех щелей интерферируют друг с другом, а на экране наблюдается система достаточно узких максимумов.

Если плоская монохроматическая световая волна падает нормально на непрозрачный экран с двумя щелями шириной a, то минимумы будут на тех

же местах, как и в случае одной щели, так как те направления, в которых ни одна из щелей не пропускала света, не пропускает его и при двух щелях.

Таким образом, условие главных минимумов

$$a \sin \varphi = \pm m\lambda$$
, $(m = 1, 2, 3,...)$.

Из-за взаимной интерференции световых лучей от двух щелей, в некоторых направлениях они будут гасить друг друга, т.е. возникнут дополнительные минимумы. Этим направлениям будет соответствовать разность хода лучей $\frac{\lambda}{2}$, $\frac{3\lambda}{2}$, ..., посылаемых от соответственных точек обеих щелей (например, точек M и C).

Условие дополнительных минимумов

$$d\sin\varphi = \pm(2m+1)\frac{\lambda}{2}, \quad (m=0,1,2,...).$$

Условие главных максимумов

$$d\sin\varphi = \pm 2m\frac{\lambda}{2}, \quad (n=0,1,2,...),$$

так как в этих направлениях действия щелей усиливают друг друга.

Между двумя главными максимумами располагается дополнительный минимум, а максимумы становятся более узкими, чем в случае одной щели.

В случае N щелей между двумя главными максимумами располагаются (N-1) дополнительных минимумов, отвечающих условию

$$d \sin \varphi = \pm m' \frac{\lambda}{N}, \quad (m' = 0, N, 2N,...).$$

Имеется также (N-2) дополнительных максимумов, но их интенсивность ничтожна по сравнению с главными максимумами.

Дифракционная решетка является спектральным прибором и характеризуется угловой дисперсией и разрешающей способностью.

Угловая дисперсия D определяет угловую ширину спектра

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi},$$

т.е. угловая дисперсия тем выше, чем больше порядок спектра и чем меньше постоянная решетки.

С увеличением числа щелей решетки главные дифракционные максимумы становятся уже. *Разрешающая способность* дифракционной решетки R характеризует минимальную разность двух монохроматических волн λ_1 и λ_2 равной интенсивности, которые можно видеть в спектре

$$R = \frac{\lambda_1}{\lambda_1 - \lambda_2} = mN.$$

Разрешающая способность решетки равна произведению количества щелей на порядок спектра.

Примеры решения задач

Задача 3.1. Определите радиус третьей зоны Френеля, если расстояния от точечного источника света ($\lambda = 600$ нм) до волновой поверхности и от волновой поверхности до точки наблюдения равны 1,5 м.

Решение

$$m = 3$$

 $\lambda = 600 \text{ HM} = 6 \cdot 10^{-7} \text{ M}$
 $a = b = 1.5 \text{ M}$
 $r_m - ?$

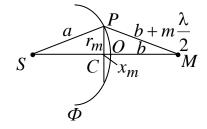


Рис. 3.4

S — точечный источник;

M — точка наблюдения;

 Φ – волновая поверхность.

По условию задачи

$$SO = OM = b$$
.

$$MP = b + m\frac{\lambda}{2}$$
,

Радиус границы третьей зоны Френеля

$$CP = r_m$$

$$CO = x_m$$
.

Из рис. 3.4 видно, что

$$r_m^2 = a^2 - (a - x_m)^2 = \left(b - m\frac{\lambda}{2}\right)^2 - (b + x_m)^2.$$
 (1)

Так как $\lambda << a$ и $\lambda << b$, то членом $(m^2 \lambda^2 / 4)$ можно пренебречь, тогда

$$x_m = \frac{mb\lambda}{2(a+b)}. (2)$$

Из уравнения (1) находим

$$r_m^2 = 2ax_m - x_m^2.$$

При $x_m << a$

$$r_m^2 = 2ax_m$$
.

Подставив (2) в (3) получим

$$r_m = \sqrt{\frac{abm\lambda}{a+b}} = 1,16$$
 MM.

Ответ: 1,16 мм.

Задача 3.2. На щель шириной a=0,1 мм падает нормально параллельный пучок монохроматического света с длиной волны $\lambda=550$ нм. Экран, на котором наблюдается дифракционная картина, расположен параллельно щели на расстоянии L=1,1 м. Определите расстояние b между первыми дифракционными минимумами, расположенными по обе стороны центрального фраунгоферова максимума.

Решение

$$a=0,1$$
 мм $=1\cdot 10^{-4}$ м Условие дифракционных минимумов от щели $\lambda=550$ нм $=5,5\cdot 10^{-7}$ м $a\sin\phi=\pm m\lambda, \quad (m=1,2,...),$ $L=1,1$ м $b-?$ где $m=1.$

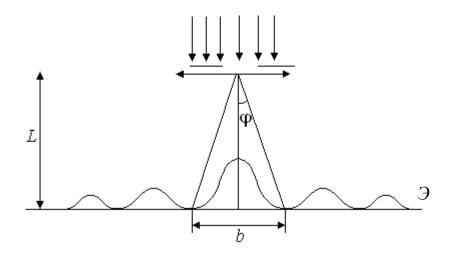


Рис. 3.5

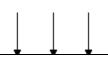
Из рис. 3.5 видно, что

$$b = 2L \operatorname{tg} \varphi, \tag{1}$$

так как $\frac{b}{2}$ << L , то $\operatorname{tg} \varphi \approx \sin \varphi$ и $b = 2L \sin \varphi$, откуда

$$\sin \varphi = \frac{b}{2L}$$
.

Подставив в (1), получим


$$b = \frac{2L\lambda}{a} = 1,21 \text{ cm}.$$

Ответ: 1,21 см.

Задача 3.3. На дифракционную решетку нормально к ее поверхности падает монохроматический свет ($\lambda = 550$ нм). На экран, находящийся от решетки на расстоянии L=1 м, с помощью линзы, расположенной вблизи решетки проецируется дифракционная картина, причем первый главный максимум находится на расстоянии l=10 см от центрального. Определите: 1) период дифракционной решетки, 2) число штрихов на 1 см ее длины, 3) общее число максимумов, даваемое решеткой, 4) угол дифракции, соответствующий последнему максимуму.

Решение

$$L = 1$$
 м
 $\lambda = 550$ нм = 5,5 · 10^{-7} м

$$m = 1$$

 $l = 10 \text{ cm} = 0.1 \text{ m}$
 $l' = 1 \text{ cm} = 0.01 \text{ m}$
 $d - ? n - ?$
 $N - ? \phi_{\text{max}} - ?$

Из условия главного максимума находим период дифракционной решетки

$$d\sin\varphi = m\lambda = 5 \text{ MKM}, \tag{1}$$

Рис. 3.6

где m – порядок спектра (m=1).

Из рис. 3.6 видно, что

$$tg\phi = \frac{l}{L}$$

так как l << L , то $\operatorname{tg} \varphi \approx \sin \varphi$ и $\frac{ld}{L} = m \lambda$, откуда

$$d = \frac{m\lambda L}{l}$$
.

Число штрихов на l'=1 см

$$n = \frac{l'}{d} = 2 \cdot 10^3 \text{ cm}^{-1}$$
.

Наибольший угол отклонения лучей решетки не может быть больше $\pi/2$, следовательно, из (1):

$$m_{\max} \le \frac{d}{\lambda}$$
, $(\sin \varphi_{\max} = 1)$.

Общее число максимумов

$$N = 2m_{\text{max}} + 1 = 19$$
,

так как максимумы наблюдаются с обеих сторон центрального максимума, а единица учитывает центральный максимум.

Угол дифракции, соответствующий последнему максимуму, найдем из (1)

$$d\sin\varphi_{\max} = m_{\max}\lambda$$
,

откуда
$$\varphi_{\text{max}} - \arcsin\left(\frac{m_{\text{max}}\lambda}{d}\right) = 81.9^{\circ}$$
.

Otbet:
$$d = 5$$
 MKM, $n = 2 \cdot 10^3$ cm⁻¹, $N = 19$, $\varphi_{\text{max}} = 81.9^{\circ}$.

Задачи для самостоятельного решения

1. Дифракционная картина наблюдается на расстоянии l=4 см от точечного источника монохроматического света ($\lambda=500$ нм). Посередине между экраном и источником света помещена диафрагма с круглым отверстием. При каком радиусе R отверстия центр дифракционных колец, наблюдаемых на экране, будет наиболее темным?

Ответ:
$$R = 10^{-3}$$
 м.

2. На щель падает нормально параллельный пучок монохроматического света. Дифракционная картина проецируется на экран с помощью линзы с фокусным расстоянием $f = 0.5\,$ м. Определите, как надо изменить ширину щели, чтобы центральная полоса занимала весь экран.

Ответ:
$$\frac{a_2}{a_1} = \frac{1}{20}$$
, т.е. ширину щели надо уменьшить в 20 раз.

3. На узкую щель нормально падает монохроматический свет. Его направление на четвертую темную дифракционную полосу составляет 2°12′. Определите, сколько длин волн укладывается на ширине щели.

Ответ: 104.

4. На дифракционную решетку длиной l=15 мм, содержащую N=3000 штрихов, падает нормально монохроматический свет с длиной волны $\lambda=550$ нм. Определите: 1) Число максимумов, наблюдаемых в спектре дифракционной решетки; 2) угол, соответствующий последнему максимуму.

Ответ:
$$n = 18$$
, $\varphi_{\text{max}} = 81^{\circ}54'$.

5. На дифракционную решетку с постоянной d=5 мкм под углом $\phi=30^{\circ}$ падает монохроматический свет с длиной волны $\lambda=0,5$ мкм. Определите угол α дифракции для главного максимума третьего порядка.

Ответ:
$$\phi = 53^{\circ}8'$$
.

6. Каков период решетки d, если при нормальном падении на нее лучей с длиной волны $\lambda = 0.75$ мкм на экране, отстоящем от решетки на расстоянии L = 1 м, максимумы первого порядка отстоят друг от друга на x = 30.3 см?