ЛЕКЦИЯ 15

ИСТОРИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ СИСТЕМЫ ЗАЩИТЫ НАСЕЛЕНИЯ И ТЕРРИТОРИЙ ОТ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Как говорят мудрецы, «чтобы хорошо видеть будущее, надо пристальнее вглядываться в прошлое».

Проблемы защиты людей от природных катастроф, вражеских набегов уходят в далекое прошлое, имеют глубокие исторические корни. С незапамятных времен люди стремились расселяться в более безопасных местах, менее подверженных природным явлениям. В целях защиты от нападений строили крепости. вооруженных В меру возможностей пытались бороться с пожарами, эпидемиями, наводнениями. Известный ученый-историк В.О. Ключевский связывал, например, причины зарождения городов, особенности архитектуры жилищ, месторасположение не только с угрозами набегов завоевателей, необходимостью более стойко переносить грозные стихийные явления.

По мере своего развития человечество понимало, что различным опасностям лучше всего противостоять только объединившись в коллективы и сообщества. Можно предположить, что данное обстоятельство в определенной мере явилось одной из причин возникновения государств.

Один из парадоксов исторического развития человечества заключается в том, что человек развивая бурную хозяйственную и инженерную деятельность сам стал создавать источники угроз как для самого себя, так и для окружающей его природы.

С развитием научно-технического прогресса, созданием новых средств вооруженной борьбы многократно увеличились военные опасности для мирного населения.

В России (СССР) пристальное внимание вопросам защиты населения на государственном уровне стало уделяться в ходе Гражданской войны и особенно после ее окончания, когда авиация получила бурное развитие и способность наносить удары по тылам противника. В связи с этим 4 октября 1932 года Совет Народных Комиссаров СССР принял «Положение о противовоздушной обороне СССР». Этот день принято считать днем рождения МПВО — начальным этапом развития государственной системы обеспечения защиты населения и территорий. Создание МВПО обеспечило в годы Великой отечественной войны успешное решение задач защиты населения и объектов народного хозяйства от нападения с воздуха.

В 1961 году руководством страны было принято решение о преобразовании МПВО в систему ГО.

В основу новой системы легло все лучшее что было создано за годы существования МПВО: была сохранена организационная структура, подходы к обеспечению защиты населения, система его обучения.

В то же время ГО существенно отличалось от МПВО:

- 1. Мероприятиям ГО был придан общегосударственный и общенародный характер, все они реализовывались на всей территории страны.
- 2. Система обеспечивала защиту населения от всех поражающих факторов оружия массового уничтожения.
- 3. Расширился круг задач, например задача по обеспечению устойчивой работы промышленности в военное время.
- 4. Новое качество приобрела задача по ликвидации последствий нападения противника опыт Хиросимы и Нагасаки показал, что может возникнуть необходимость оказания помощи одновременно сотням тысяч пострадавших.

Вместе с тем ГО была ориентирована на мероприятия военного времени, т.е. носила «однобокий» характер. Авария на Чернобыльской АЭС (1986 г.) подтвердила это, показав что ГО не готова к решению задач по защите населения и территорий от ЧС природного и техногенного характера.

В 1992 году была создана Российская система предупреждения и действий в ЧС (РСЧС), в 1994 году — МЧС России (Министерство РФ по делам ГО и ЧС и ликвидации последствий стихийных бедствий).

История МПВО – Γ О показывает что результат будет намного эффективнее, если заранее готовиться к возможным ЧС, чем изыскивать средства и силы в условиях уже свершившейся катастрофы.

Основные опасности и угрозы, которые могут возникнуть на территории России до 2010 года

Комплексный анализ таких опасностей был проведен МЧС и РАН.

Вследствие изменения (потепления) климата может произойти перераспределение осадков на территории России, увеличиться число и сила засух, возрастет количество пожаров. Ожидается разрушение зоны вечной мерзлоты на значительных территориях. Обостряться проблемы обеспечения чистой водой и продовольствием. Сохранится сложная экологическая обстановка.

До уровня реальных угроз возрастают опасности космогенного характера, в частности, астероидные, геомагнитные бури, солнечная активность.

Сохранится высокий уровень опасностей природного характера. В период до 2010 года прогнозируется 2-3 катастрофических землетрясения; 1-2 наводнения; увеличение количества лесных и торфяных пожаров. Наиболее опасных в этом отношении Камчатская, Сахалинская области, Забайкалье, Северный Кавказ. Ожидаемый в России в начале XXI века существенный рост в металлургической, химической и других потенциально опасных отраслях экономики в условиях значительного износа основных производственных фондов, снижения технологической дисциплины и квалификации обслуживающего персонала может привести к увеличению числа техногенных катастроф – это Республика Саха (Якутия), Красноярский

край, Иркутская, Камчатская, Кемеровская, Ленинградская, Магаданская, Свердловская и Читинская области, город Москва.

А что же Татарстан?

Специалисты Института физики земли РАН, на основании более полных данных и совершенных методик, разработали новую карту сейсмического районирования России. Согласно ей, Татарстан отнесен к стоящей на грани риска 6-7 — балльной зоне возможных землетрясений. Объясняет карта и произошедшие еще в 80-е годы серьезные подземные толчки на юго-востоке республики: именно нефтеносная провинция Татарстана и, что особенно опасно, обширная область (свыше 300 кв. м) Ромашкинского месторождения, находится в наиболее рискованной, 7-балльной зоне республики.

зря говоря, что Земля все активнее мстит человеку беззастенчивое вторжение в ее недра. Под территорией Татарстана, например, никаких естественных сейсмически активных узлов (как в Турции, Японии или на Камчатке), залегающих, как правило, на глубине до 700 км, нет и в помине. То есть длительное время мы действительно жили в сейсмически безопасной зоне, и никаких волнений по поводу возможных разрушительных колебаний земной тверди не испытывали. Пока не выкачали такое огромное количество нефти, что образовавшиеся под землей рукотворные пустоты, соединившись с обширными природными карстовыми лагунами, создали реальную опасность возникновения выпестованных нами же самими землетрясений.

Опасения ученых отнюдь не беспочвенны – ведь в зоне повышенного сейсмического риска оказались только крупнейшие не нефти, месторождения пожаро-И химически НО И такие предприятия, как республиканские гиганты-монстры «Нижнекамскнефтехим» и «Нижнекамскшинна».

Опыт показывает, что основные мощности и «Нижнекамскнефтехима», и «Нижнекамскшины» давно изношены настолько, что локальные производственные аварии, случающиеся на обоих гигантах республиканской нефтехимии с пугающей регулярностью, приводят к серьезным ухудшениям экологической обстановки в окружающих регионах.

Понятие чрезвычайной ситуации

Чрезвычайная ситуация (ЧС) – состояние, при котором в результате возникновения источника ЧС на объекте, определенной территории или акватории нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносятся ущерб имуществу населения, народному хозяйству и окружающей природной среде.

Под источником ЧС понимают опасное природное явление, аварию или опасное техногенное происшествие, широкораспространенную инфекционную болезнь людей, сельскохозяйственных животных и растений,

а также применение современных средств поражения, в результате чего произошла или может возникнуть ЧС (ГОСТ Р22.0.02-94).

Проблема защиты от ЧС крайне актуальна во всем мире и в России в том числе. 11 октября 1994 г. Госдумой РФ был принят, а 21 октября 1994 г. подписан Президентом РФ Закон Российской Федерации «О защите населения и территорий от ЧС природного и техногенного характера».

В ст. 4 Закона представлена Единая государственная система предупреждения и ликвидации ЧС.

Четко расписаны обязанности организаций в области защиты населения и территорий от ЧС (ст. 14), а также определены права и обязанности граждан РФ в области защиты населения и территорий от ЧС и социальная защита пострадавших (Гл. IV).

С целью осуществления контроля за соблюдением мер безопасности, оценки достаточности и эффективности мероприятий по предупреждению и ЧС промышленных объектах Правительство ликвидации на постановлением от 1 июля 1995 г. № 675 «О декларации безопасности объекта РФ», ввело для предприятий, учреждений, промышленного организаций и др. юридических лиц всех форм собственности, имеющих в составе производства повышенной опасности обязательную разработку декларации промышленной безопасности.

Приказом МЧС России и Госгортехнадзора России от 4 апреля 1996 г. № 222/59 введен в действие «Порядок разработки декларации безопасности промышленного объекта РФ».

Согласно постановления декларация безопасности ЭТОГО промышленного объекта является документом, в котором отражены характер и масштабы опасностей на промышленном объекте и выработанные мероприятия по обеспечению промышленной безопасности и готовности к действиям чрезвычайных техногенных ситуациях. Декларация действующих, разрабатывается как ДЛЯ так И ДЛЯ проектируемых предприятий. Декларация безопасности действующего промышленного особо опасными производствами является обязательным документом, который разрабатывается организацией собственными силами (или организацией, имеющей лицензию на такой вид работ) и представляется Росгортехнадзора России при получении лицензии осуществление промышленной деятельности, связанной с повышенной опасностью производств.

Классификация ЧС

ЧС могут быть классифицированы по значительному числу признаков.

Так, по происхождению ЧС можно подразделять на ситуации техногенного, антропогенного и природного характера. ЧС можно классифицировать по типам и видам событий, лежащих в основе этих ситуаций, по масштабу распространения, по сложности обстановки (например, пожары), тяжести последствий и т.д.

Различают ЧС мирного времени и ЧС военного времени.

К ЧС мирного времени относятся ЧС, возникающие в результате аварий и катастроф техногенного характера, стихийных бедствий, инфекционных болезней и т.д.

ЧС военного характера возникают в результате применения современных средств поражения – ядерного, химического и биологического оружия (так называемого оружия массового поражения – ОМП).

Во исполнении Федерального закона «О защите населения и территорий от ЧС природного и техногенного характера» Правительство РФ своим постановлением № 1094 от 13 сентября 1996 г. утвердило положение о классификации чрезвычайных ситуаций природного и техногенного характера, в соответствии с которым ЧС классифицируются в зависимости от количества людей, пострадавших в этих ситуациях, или людей, у которых оказались нарушены условия жизнедеятельности, размера материального ущерба, а также границы зон распространения поражающих факторов ЧС.

В соответствии с этим постановлением, ЧС подразделяются на локальные, местные, территориальные, региональные, федеральные и трансграничные.

К локальной, относится ЧС, в результате которой пострадало не более 10 человек, либо нарушены условия жизнедеятельности не более 100 человек, либо материальный ущерб составляет не более 1 тыс. минимальных размеров оплаты труда на день возникновения ЧС и зона ЧС не выходит за пределы территории объекта производственного или социального назначения.

К местной относится ЧС, в результате которой пострадало от 10 до 50 человек, либо нарушены условия жизнедеятельности от 100до 300 человек, либо материальный ущерб составляет от 1 тыс. до 5 тыс. минимальных размеров оплаты труда на день возникновения ЧС и зона ЧС не выходит за пределы населенного пункта: города, района.

К территориальной относится ЧС, в результате которой пострадало от 50 до 500 человек, либо нарушены условия жизнедеятельности от 300 до 500 человек, либо материальный ущерб составил от 5 тыс. до 0,5 млн. минимальных размеров оплаты труда и зона ЧС не выходит за пределы субъекта РФ.

К региональной относится ЧС, в результате которой пострадало от 50 до 500 человек, либо нарушены условия жизнедеятельности от 500 до 1000 человек, либо материальный ущерб составляет от 0,5 до 5 млн. минимальных размеров оплаты труда и зона ЧС охватывает территорию двух субъектов РФ.

К федеральной относится ЧС, в результате которой пострадало свыше 500 человек, либо нарушены условия жизнедеятельности свыше 1000 человек, либо материальный ущерб составляет свыше 5 млн. минимальных размеров оплаты труда и зона ЧС выходит за пределы более чем двух субъектов РФ.

К трансграничной относится ЧС, поражающие факторы которой выходят за пределы РФ или ЧС, которая произошла за рубежом и затрагивает территорию РФ.

ЧРЕЗВЫЧАЙНЫЕ СИТУАЦИИ ТЕХНОГЕННОГО ХАРАКТЕРА

Источником техногенной ЧС является опасное техногенное происшествие (авария или катастрофа).

Что такое авария и катастрофа и в чем их различие?

Авария — это опасное происшествие на промышленном объекте или транспорте, создающее угрозу жизни и здоровью людей, приводящее к разрушению производственных помещений и сооружений, повреждению или уничтожению оборудования, механизмов, транспортных средств, сырья и готовой продукции, к нарушению производственного процесса и ущербу окружающей среде.

Катастрофа — событие с трагическими последствиями, крупная авария с гибелью людей. Резких и строго очерченных границ и различий между аварией и катастрофой не существует.

Главные критерии — масштаб ущерба и наличие человеческих жертв. Например, если при столкновении двух-трех машин имеются повреждения, легко пострадали люди — это авария, если же на месте происшествия есть погибшие — это автомобильная катастрофа.

К опасным техногенным происшествиям относятся аварийные взрывы и пожары в промышленной зоне; химические аварии, связанные с поступлением в окружающую среду опасных химических веществ; радиационные аварии и т.п.

Пожары и взрывы

Пожары и взрывы являются самыми распространенными чрезвычайными событиями, в современном индустриальном обществе.

Наиболее часто и, как правило, с тяжелыми социальными последствиями происходят пожары на пожароопасных и пожаровзрывоопасных объектах.

К объектам, на которых наиболее возможны взрывы и пожары, относятся:

- предприятия химической, нефтеперерабатывающей целлюлознобумажной промышленности;
- предприятия, использующие газо- и нефтепродукты в качестве сырья для энергоносителей;
 - газо- и нефтепроводы;
- все виды транспорта, перевозящие взрыво- и пожароопасные вещества;
 - -топливозаправочные станции;
 - предприятия пищевой промышленности;

Основные понятия и определения

Пожар — это неконтролируемое горение вне специального очага, наносящее материальный ущерб и создающее опасность для жизни и здоровья.

Горение — химическая реакция окисления, сопровождающая выделением большого количества тепла и обычно свечением. Для возникновения горения необходимо наличие горючего вещества, окислителя (обычно кислорода воздуха, а также фтор, йод, бром, оксиды азота) и источника зажигания. Кроме того необходимо, чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник зажигания имел бы достаточную энергию.

Взрыв — чрезвычайно быстрое выделение энергии в ограниченном объеме, связанное с внезапным изменением состояния вещества и сопровождающееся образованием большого количества сжатых газов, способных производить механическую работу. Взрыв является частным случаем горения. Но с горением в обычном понятии его роднит лишь то, что окислительная реакция. Для взрыва характерны следующие особенности:

- большая скорость химического превращения;
- большое количество газообразных продуктов;
- мощное дробящее (бризантное) действие;
- сильный звуковой эффект.

Продолжительность взрыва составляет время порядка 10^{-5} ... 10^{-6} с. Поэтому его мощность весьма велика, хотя запасы внутренней энергии у взрывчатых веществ и смесей не выше, чем у горючих веществ, сгорающих в обычных условиях.

При анализе взрывных явлений рассматривают две разновидности взрыва: **взрывное горение и детонация.**

Характерной особенностью **взрывного горения** является скорость горения порядка нескольких сотен м/с.

Детонация — весьма быстрое разложение взрывчатого вещества (газовоздушной смеси), распространяющееся по нему со скоростью в несколько км/с и характеризующееся особенностями, присущими любому взрыву, указанному выше. Детонация характерна для военных и промышленных взрывчатых веществ, а также для топливно-воздушных смесей, находящихся в замкнутом объеме.

Отличие взрывного горения от детонации состоит в скорости разложения, у последней она на порядок выше. В заключение следует сравнить три вида разложения: обычное горение, взрывное и детонацию (табл. 1).

Сравнительные характеристики различных процессов горения

Обычное горение	Взрывное горение	Детонация
1. Реакция окисления	1. Реакция окисления	1. Взрыв, распространяющийся с
		максимально возможной для дан-
		ного вещества (смеси) скоростью
		км/с, превышающий скорость зву-
		ка в данном веществе
2. Переменная скорость	2. Переменная скорость	2. Стационарная форма взрывного
от нескольких долей см	сотни м/с	горения V = const
до нескольких м/с		
3. Скорость зависит от	3. Скорость мало зависит	3. Максимальное разрушительное
внешнего давления	от внешнего давления	действие взрыва
4. Не сопровождается	4. Резкий скачок давле-	
звуковым эффектом	ния в месте взрыва	
	5. Образование большого	
	количества газообразных	
	продуктов	
	6. Сильный звуковой	
	эффект	
	7.Мощное дробящее	
	действие	

Процессы **обычного горения** протекают сравнительно медленно и с переменной скоростью — обычно от долей сантиметра до нескольких метров в секунду. Скорость горения существенно зависит от многих факторов, на главным образом, от внешнего давления, заметно возрастая с повышением последнего. На открытом воздухе этот процесс протекает сравнительно вяло и не сопровождается сколько-нибудь значительным звуковым эффектом. В ограниченном же объеме процесс протекает значительно энергичнее, характеризуется более или менее быстрым нарастанием давления способностью газообразных продуктов горения производить работу.

Взрывное горение по сравнению с обычным представляет собой качественно иную форму распространения процесса. Отличительными чертами взрывного горения являются: резкий скачок давления в месте взрыва, переменная скорость распространения процесса, измеряемая сотнями метров в секунду и сравнительно мало зависящая от внешних условий. Характер действия взрыва — резкий удар газов по окружающей среде, вызывающий дробление и сильные деформации предметов на относительно небольших расстояниях от места взрыва.

Детонация представляет собой взрыв, распространяющийся с максимально возможной для данного вещества (смеси) и данных условий (например, концентрация смесей) скоростью, превышающей скорость звука в данном веществе и измеряемой тысячами метров в секунду. Детонация не отличается по характеру и сущности явления от взрывного горения, на

представляет собой его стационарную форму. Скорость детонации является величиной постоянной для данного вещества (смеси определенной концентрации). В условиях детонации достигается максимальное разрушительное действие взрыва.

Классификация объектов по взрыво-, пожароопасности

Таблица 2. Определение категории помещения

TC	V		
Категория помещения	Характеристика веществ и материалов, находящихся		
	(обращающихся) в помещении		
1	2		
А повышенная	Горючие газы, легковоспламеняющиеся жидкости с		
взрывопожароопасность	температурой вспышки не более 28 °С в таком количестве, что		
	могут образовать взрывоопасные парогазовоздушные смеси,		
	при воспламенении которых развивается расчетное		
	избыточное давление взрыва в помещении, превышающее 5		
	кПа. Вещества и материалы, способные взрываться и гореть		
	при взаимодействии с водой, кислородом воздуха или друг с		
	другом в таком количестве, что расчетное избыточное		
	давление взрыва в помещении превышает 5 кПа.		
Б	Горючие пыли или волокна, легковоспламеняющиеся		
взрывопожароопасность	жидкости с температурой вспышки более 28 °C, горючие		
	жидкости в таком количестве, что могут образовать		
	взрывоопасные пылевоздушные или паровоздушные смеси,		
	при воспламенении которых развивается расчетное		
	избыточное давление взрыва в помещении, превышающее		
	5 кПа.		
В1-В4 пожароопасность	Горючие и трудногорючие жидкости, твердые горючие и		
21 2 . Homapoonacito	трудногорючие вещества и материалы (в том числе пыли и		
	волокна), вещества и материалы, способные при		
	взаимодействии с водой, кислородом воздуха или друг с		
	другом только гореть, при условии, что помещения, в которых		
	они имеются в наличии или обращаться, не относятся к		
	категориям А или Б (опасность взрыва отсутствует).		
Г умеренная	Негорючие вещества и материалы в горячем, раскаленном или		
пожароопасность	расплавленном состоянии, процесс обработки которых		
1	сопровождается выделением лучистого тепла, искр и пламени;		
	горючие газы, жидкости и твердые вещества, которых		
	сжигаются или утилизируются в качестве топлива.		
Д пониженная	Негорючие вещества и материалы в холодном состоянии.		
пожароопасность	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
L			

Определение категорий помещений следует осуществлять путем последовательной проверки принадлежности помещений к категориям, приведенным в табл. 2 от высшей (А) к низшей (Д).

Категории зданий определяют, исходя из площадей находящихся в них помещений различных категорий. Например, здание относится к категории A, если, в нем суммарная площадь помещений категории A превышает 5 % площади всех помещений или равна $200 \, \text{m}^2$.

Эта методика достаточна проста и универсальна и является основной для установления требований в отношении планировки и застройки, этажности, конструктивных решений, размещения инженерного оборудования, безопасности людей.

Разделение помещений на категории В1-В4 зависит от удельной пожарной нагрузки на участке (табл. 3).

Таблица 3. Определение пожароопасной категории помещения

Категория помещения	Удельная пожарная нагрузка д на участке,
	МДж·м ⁻²
B1	Более 2200
B2	1401-2200
B3	181-1400
B4	1-180

В соответствии со сказанным выше помещения, здания и сооружения, в которых размещается тепловое хозяйство промышленных предприятий, относят к категориям, указанным в табл. 4.

Таблица 4. Пожарная характеристика зданий и сооружений котельных

Здание (помещение) и сооружения	
1	
Котельный зал, помещения дымососов	
Помещения водоподготовки	
Помещения щитов управления, щитов станций управления	
Помещения топливоподачи твердого топлива (угля, торфа)	
Открытые склады твердого топлива	
	руют
Закрытые склады угля	
Отдельные помещения пылеприготовительных установок	
Приемно-сливные устройства, закрытые склады и насосные станции жидкого	
топлива с температурой вспышки паров 28-61 °C	
То же для жидкого топлива с $T_{\text{всп.}} > 61 ^{\circ}\text{C}$	
Помещение газораспределительных пунктов и складов горючих газов	
Насосные станции конденсата и противопожарного водоснабжения	
Склады реагентов	

Чаще всего непосредственными причинами возникновения пожара служат замыкания в электропроводах, утечка газа и его взрыв, неисправность отопительных систем, емкостей с ЛВЖ. Взрываются котлы, пары бензина и других компонентов. Статистика свидетельствует, что каждые 5 минут в нашей стране вспыхивают пожар. Горят промышленные предприятия, объекты с/х, учебные заведения, жилые дома и т.п. Ежегодно в пепел и дым превращаются огромные ценности. Каждый час в огне гибнет один человек и около 20 получают ожоги и травмы.

Эти цифры не только настораживают, но и призывают к действиям, принятию конкретных мер.

Для оценки пожаро- и взрывоопасности производств необходимо знать показатели пожаро- и взрывоопасности веществ, используемых в производственных процессах, т.е. сравнительную вероятность их горения в равных условиях.

Классификация веществ по горючести

Все вещества делятся на горючие, трудногорючие и негорючие.

Вещества, способные самостоятельно гореть после удаления источника зажигания, называются горючими.

Вещества, которые на воздухе не горят называются негорючими.

Промежуточное положение занимают **трудногорючие** вещества, которые возгораются при действии источника зажигания, но прекращают горение после его удаления.

Все горючие вещества делятся на следующие основные группы:

1. Горючие газы (ГГ) – вещества, способные образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 50 °С. К ГГ относятся индивидуальные вещества: аммиак, ацетилен, бутадиен, бутан, водород, метан, окись углерода, пропан, сероводород, формальдегид, а также пары ЛВЖ и ГЖ.

Горючие газы относятся к взрывоопасным при любой температуре окружающей среды.

Различают:

Легкий газ: который при температуре 20 °C и давлении 100 кПа имеет плотность менее < 0,8 по отношению к плотности воздуха (т.е. относительную плотность).

Тяжелый газ: > 1,2. если относительная плотность находится в промежутке, то следует учитывать обе возможности.

Сжиженный газ: который при температуре ниже 20 °C или давлении выше 100 кПа или при совместном действии обоих этих условий обращается в жидкость.

2. Легковоспламеняющиеся жидкости (ЛВЖ) — вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки не выше 61 °C (в закрытом тигле). К таким жидкостям

относятся индивидуальные вещества: ацетон, бензол, гексан, гептан, ксилол, метиловый спирт, сероуглерод, стирол, уксусная кислота, хлорбензол, этиловый спирт, а также смеси и технические продукты: бензин, дизельное топливо, керосин, растворители.

К взрывоопасным относятся ЛВЖ, у которых температура вспышки не превышает 61 °C, а давление паров при температуре 20 °C составляет менее 100 кПа (около 1 атм.).

3. Горючие жидкости (ГЖ) — вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки выше 61 °C (в закрытом тигле) или 66 °C (в открытом). К ГЖ относятся следующие индивидуальные вещества: анилин, гексиловый спирт, глицерин, этиленгликоль, а также смеси и технические продукты, например, масла: трансформаторное, вазелиновое, касторовое.

ГЖ с температурой вспышки > 61 °C относятся к пожароопасным, но нагретые в условиях производства до температуры вспышки и выше, относятся к взрывоопасным.

4. Горючие пыли (ГП) — твердые вещества, находящиеся в мелкодисперсном состоянии. ГП, находящаяся в воздухе (аэрозоль), способна образовывать с ним взрывчатые смеси. Осевшая на стенах, потолке, поверхностях оборудования пыль (аэрогель) пожароопасна.

ГП по степени взрыво- и пожароопасности делятся на четыре класса.

- **1 класс** наиболее взрывоопасны аэрозоли, имеющие нижний концентрационный предел воспламенения (взрываемости) (НКПВ) до 15 г/м³ (сера, нафталин, канифоль, пыль мельничная, торфяная, эбонитовая).
- **2 класс** взрывоопасные аэрозоли, имеющие величину НКПВ от 15 до 65 г/м 3 (алюминиевый порошок, пыль мучная, сенная, сланцевая).
- **3 класс** наиболее пожароопасные аэрогели, имеющие величину НКПВ более 65 г/m^3 и температуру самовоспламенения до 250 °C (табачная, элеваторная пыль).
- **4 класс** пожароопасные аэрогели, имеющие величину НКПВ более 65 г/m^3 и температуру самовоспламенения более 250 °C (древесные опилки, цинковая пыль).

Основные показатели пожаро- взрывоопасности веществ

Рассмотрим некоторые характеристики горючих веществ, необходимые для прогнозирования аварийных ситуаций.

Температура вспышки — наименьшая температура жидкости, при которой около ее поверхности образуется паровоздушная смесь, способная вспыхивать от источника зажигания, не вызывая при этом устойчивого горения жидкости. Устойчивое горение имеет место при **температуре воспламенения** — это наименьшая температура жидкости, при которой около ее поверхности образуется паровоздушная смесь, которая после зажигания способна устойчиво гореть после удаления источника зажигания.

Температура самовоспламенения — самая низкая температура горючего вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения (без внешнего источника зажигания). Самовоспламенение возможно только в том случае, если количество теплоты, выделяемой в результате экзотермической реакции будет превышать отдачу теплоты в окружающую среду.

Верхний и нижний концентрационные пределы взрываемости (воспламенения) — соответственно максимальная и минимальная концентрация горючих газов, паров легковоспламеняющихся или горючих жидкостей, пыли или волокон в воздухе, выше и ниже которых взрыва не произойдет даже при наличии источника инициирования взрыва (например, для бензина: НКПВ — 1,9 %, ВКПВ — 5,1 %; для водорода: НКПВ — 4 %, ВКПВ — 88 %). В проекте нового издания ПУЭ термин НКПВ и ВКПВ заменен на НПВ и ВПВ.

Кроме рассмотренных существует еще много других показателей пожаро- взрывоопасности веществ: температура тления, кислородный индекс, скорость выгорания, коэффициент дымообразования и т.п.